
K.S. SCHOOL OF ENGINEERING AND MANAGEMENT,

BANGALORE - 560109

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Affiliated to

Visvesvaraya Technological University

Lab Manual

INTRODUCTION TO C PROGRAMMING

(Subject Code: BESCK104E/204E)

Prepared by:

Ms. Ambuja K

Assistant Professor

Dept. of CSE, KSSEM

 Mrs. Prasanna N

Assistant Professor

Dept.of CSE,KSSEM

Department of Computer Science and Engineering

Raghuvanahalli, Kanakapura Main Road,

Bangalore 560109

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 2

INTRODUCTION

Numerous examples in the past where human beings have used either living or

nonliving objects as told to overcome inherent disabilities. Computers are just one of the latest

tools being designed and used to overcome inherent disability.

The main disability of human beings is that most of us cannot perform large and

complicated computations accurately and quickly. So designed a tool called the computer

which can perform computations with a very high accuracy and speed. However computers

will have to be given instructions to perform computation. Set of instructions given to the

computer to perform computations is technically called a program.

The programmer cannot start to write a program directly. He has to plan before

writing a program. This is somewhat similar to the fact that if a person decides to construct a

house, the very next day, he would not start to construct the house directly. He has to plan

each and every minor detail before proceeding to construct the house. Once the entire plan

(sketch) of the house is ready, then he can proceed and construct the house.

Similarly, before writing a program, the programmer has to plan the steps and the

sequence in which these steps must be performed to obtain the correct results. If the

programmer skips (forget) a few steps or perform the steps in a wrong sequence, then the

computer would produce a wrong result.

Hence, programs must be planned before they are written. During this process of

planning the programmer must first try to write an algorithm, then a flow chart, and then try

to convert the flow chart to a program.

So the sequence of steps involved in the problem solving at as follows:

1. Understand the problem.

2. Express the solution to the problem in the form of an algorithm.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 3

3. Express the algorithm pictorially in the form of flow chart

4. Express the flow chart in the form of a program

5. Feed the program to a computer

6. Obtain the result

Algorithm and flowcharts are the initial preparatory steps taken by the programmer

before writing the actual program. First writing an algorithm then a flow chart to a problem

and then writing a program to that problem makes programming easier, rather than directly

writing a program.

ALGORITHM

Algorithm is defined as a sequence of unambiguous instructions designed in such a

way that if the instructions are performed in the specified sequence, the desired results would

be obtained.

However it is important to note that an algorithm cannot be directly fed into the

computer for its execution. An algorithm just represents the logic to solve a problem in a step

by step manner.

How to write an algorithm?

If the algorithm has to follow the following notation:

 The name of the algorithm must be specified.

 Step number must be given to each of the steps for the sake of identification of the

steps.

 Each step must have an explanatory note provided within the square brackets

followed by the corresponding operation.

 The completion of an algorithm must be specified towards the end, using a stop

statement

The above steps would become clear with the following example

Write an algorithm to compute simple interest.

Logic: Simple interest can be computed using the formula si=p*t*r/100.

Algorithm: Simple interest

Step 1: [input principle, time and rate of interest]

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 4

Read p,t and r

Step 2: [Compute the simple interest]

Si=(p*t*r)/100;

Step 3: [output the result]

print si

Step 4: [Finished]

Stop

Purpose for writing an algorithm

 Effective communication: Since an algorithm is written using English like

statements, it is more readable and understandable.

 Effective analysis: Writing an algorithm would help us to obtain an in-depth

understanding of the problem and hence would enable us to write programs easily.

 Effective coding: Once an algorithm is ready, programmers find it very easy to

write the corresponding program because an algorithm acts as a road map for

them.

 Effective debugging: Once an algorithm is ready, se can identify if there are any

errors and debug (rectify) such errors.

 Easy maintenance: Algorithm also provides for proper documentation and hence

supports easy maintenance of the software.

Flowcharts

A flow chart is a pictorial representation of an algorithm that uses boxes of different

shapes to denote the flow of the control.

Normally, algorithms are not directly converted to programs. And algorithm is first

represented in the form of a flow chart and the flow chart is then used to write a program.

Flow chart shows the flow of control in a pictorial form, any errors in the logic of the

program can be easily detected.

It is important to note that the experienced programmers sometimes write program

directly without drawing the flow chart. However for a beginner, it is always recommended

to write an algorithm and a flow chart and then only write a program in order to reduce the

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 5

number of errors in the program and also make programming easier.

Geometric figures used in flow chart

A flow chart uses different geometric shape to denote different types of actions. Some

of the standard geometric shapes and their meaning are as given below

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 6

SAMPLE PROGRAMS

Program1: Write a C program for Calculation of Simple Interest.

Description: Simple interest is a method to calculate the amount of interest charged on a sum at

a given rate and for a given period of time.

Simple interest is calculated with the following formula: S.I. = P × R × T, where P = Principal,

R = Rate of Interest in % per annum, and T = Time, usually calculated as the number of years.

The rate of interest is in percentage r% and is to be written as r/100.

Algorithm:

Step 1: Start.

Step 2: Read Principal Amount, Rate and Time.

Step 3: Calculate Interest using formula SI= ((amount*rate*time)/100)

Step 4: Print Simple Interest.

Step 5: Stop.

Flow Chart:

Source Code:

#include<stdio.h>

int main()

{

int p,r,t,int_amt;

printf("Input principle, Rate of interest & time to find simple interest: \n");

scanf("%d%d%d",&p,&r,&t);

int_amt=(p*r*t)/100;

printf("Simple interest = %d",int_amt);

return 0;

}

https://www.cuemath.com/measurement/time/
https://www.cuemath.com/commercial-math/percentages/

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 7

Input - Output:

Enter the principal amount: 18000

Enter the Time Period: 2

Enter the Rate of Interest: 6

Simple interest for Principal Amount 18000.00 is 2160.00

Program 2: Write a C program to check whether the given number is Even or Odd.

Description: A number which is divisible by 2 and generates a remainder of 0 is called an even

number. An odd number is a number which is not divisible by 2. The remainder in the case of an odd

number is always “1”.

Algorithm:

Step 1: Start

Step 2: READ number

Step 3: remainder=number%2

Step 4: if remainder = =0

 Display "Even Number"

 else

 Display "Odd Number"

Step 5: Stop

Flow Chart:

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 8

Source Code:

#include<stdio.h>

 int main()

 {

 int number;

 printf("Enter the number:");

 scanf("%d", &number);

 if(number%2==0)

 printf("%d is even", number);

 else

 printf("%d is odd", number);

 return 0;

 }

Input - Output:

Enter the number: 2

2 is even

Enter the number: 3

3 is odd

Program 3: Write a C program to convert String Case.

Description: Given a string, convert the characters of the string into opposite case, i.e. if a character

is lower case then convert it into upper case and vice-versa.

Algorithm for lowercase to uppercase:

Step 1: Start

Step 2: Check if the character is between ‘a’ and ‘z’ i.e. it is a lower case letter.

Step 3: If the character is a lower case letter, we subtract 32 from it.

Step 4: Else, the character is already in upper case. Do nothing.

Step 5: Stop

Algorithm:

Algorithm to convert uppercase to lowercase:

Step 1: Start

Step 2: Check if the character is between A and Z i.e. it is a capital letter,

Step 3: If the character is a capital, we add 32 to it.

Step 4: Else, the character is already in lower case. Do nothing.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 9

Step 5: Stop

Flow Chart:

Source Code:

Lowercase to Uppercase

#include<stdio.h>

#include<string.h>

int main()

{

char s[100];

int i;

printf("\n Enter a string : ");

gets(s);

for(i=0;s[i]!='\0'; i++)

{

if(s[i] >= 'a' && s[i] <='z')

{

s[i]= s[i]-32;

}

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 10

}

printf(" String in Upper case : %s", s);

return 0;

}

Input - Output:

Enter a string: kssem

 String in Upper case : KSSEM

Uppercase to Lowercase:

#include<stdio.h>

#include<string.h>

int main()

{

char s[100];

int i;

printf("\n Enter a string : ");

gets(s);

for(i=0;s[i]!='\0'; i++)

{

if(s[i] >= 'A' && s[i] <='Z')

{

s[i]= s[i]+32;

}

}

printf(" String in Lower case : %s", s);

return 0;

}

Input - Output:

Enter a string : KSSEM

 String in Lower case : kssem

Program 4: Write a C program to check for the Palindrome.

Description: A palindrome is a word, number, phrase, or other sequence of characters which reads

the same backward as forward, such as madam or racecar.

Algorithm:

Step 1: Start

Step 2: Take a number num as input.

Step 3: Copy value of num to another variable say temp i.e. temp = num.

Step 4: Initialize a variable to 0 say reverse i.e. rev = 0.

Step 5: Perform rem=num%10.

Step 6: Perform num=num/10.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 11

Step 7: Perform rev=rem+(rev*10).

Step 8: if temp==rev

 Display Palindrome.

 Else

Not a palindrome

Step 9: Stop

Flow Chart:

Source Code:

#include<stdio.h>

int main()

{

int num,rem,rev,temp;

printf("Enter a positive integer number:\n");

scanf("%d", &num);

rev=0;

temp=num;

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 12

while(num!=0)

{

 rem=num%10;

 num=num/10;

 rev=rem+(rev*10);

}

if(temp==rev)

 printf("The given number %d is palindrome", temp);

else

 printf("The given number %d is not a palindrome", temp);

}

Input - Output:

Enter a positive integer number:

121

The given number 121 is palindrome

Enter a positive integer number:

456

The given number 456 is not a palindrome

Program 5: Write a C program to check whether the given number is Prime or not.

Description: Prime numbers are natural numbers that are divisible by only 1 and the number itself.

In other words, prime numbers are positive integers greater than 1 with exactly two factors, 1 and the

number itself. Some of the prime numbers include 2, 3, 5, 7, 11, 13, etc.

Algorithm:

Input: Any integer value

Output: The entered value is prime or not.

Step 1: Start

Step 2: Read value.

Step 3: By using for loop find the prime number between n1 and n2 using function.

Step 4: Using for loop, check whether the number is divisible or not.

Step 5: If divisible, terminate loop and return 0. If not divisible, terminate loop and return 1.

Step 6: If 1, display number is prime. If 0, display number is not prime.

Step 7: Stop.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 13

Source Code:

#include<stdio.h>

int isprime(int);

int main()

{

int num;

printf("Enter value of num:\n");

scanf("%d",&num);

if (isprime(num))

printf("%d is a prime number",num);

else

printf("%d is not a prime number",num);

}

int isprime(int x)

{

int i;

for(i=2;i<=x/2;i++)

if(x%i == 0)

return 0;

return 1;

}

Input - Output:

Enter value of num:

17

17 is a prime number

Enter value of num:

10

10 is not a prime number

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 14

Program 6: Write a C Program to check for perfect square.

Description:

 A perfect square is when the two equal numbers are multiplied by each other. For example, let

us consider the number 25. 25 is a perfect square as we are multiplying two equal integers 5*5

by each other.

Algorithm:

Step 1: Start.

Step 2: Read variable i.

Step 3: Take a number from the user say x.

Step 4: If a variable i<=0, then if x=i*i

Step 5: Display “Given Number is Perfect Square”.

Step 6: Otherwise Display “Given Number is not a Perfect Square.”

Step 7: Stop.

Flow Chart:

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 15

Source Code:

#include<stdio.h>

int main()

{

 int i, x;

 printf("Enter a number: ");

 scanf("%d", &x);

 for(i = 0; i <= x; i++)

 {

 if(x == i*i)

 {

 printf("%d is a perfect square \n", x);

 return 0;

 }

 }

 printf("%d is not a perfect square\n", x);

 return 0;

}

Input - Output:

Enter a number: 50

50 is not a perfect square

Enter a number: 49

49 is a perfect square

Program 7:Write a C program to demonstrate linear search algorithm.

Description:

Linear search is also called as sequential search algorithm. It is the simplest searching

algorithm. In Linear search, we simply traverse the list completely and match each element of

the list with the item whose location is to be found. If the match is found, then the location of the

item is returned; otherwise, the algorithm returns NULL.

Algorithm:

Step 1: Start.

Step 2: Take an array input and let us name it as array[5].

Step 3: Declare c, n for number of elements in an array and search variable for elements to be

searched.

Step 4: Linearly traverse the array using for loop.

Step 5: For each element in an array, check if array[c]==search.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 16

Step 6: If element is found in an array, then display “Number is present at location”.

Step 7: Check if c==n, then display “Element is not present in an array.

Step 8: Stop.

Flow Chart:

Source Code:

#include <stdio.h>

int main()

{

 int array[5], search, c, n;

 printf("Enter number of elements in array\n");

 scanf("%d", &n);

 printf("Enter %d integer(s)\n", n);

 for (c = 0; c < n; c++)

 scanf("%d", &array[c]);

 printf("Enter a number to search\n");

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 17

 scanf("%d", &search);

 for (c = 0; c < n; c++)

 {

 if (array[c] == search) /* If required element is found */

 {

 printf("%d is present at location %d.\n", search, c+1);

 break;

 }

 }

 if (c == n)

 printf("%d isn't present in the array.\n", search);

 return 0;

}

OUTPUT:

Enter number of elements in array

5

Enter 5 integer(s)

25 10 36 44 56

Enter a number to search

13

13 isn't present in the array.

Enter number of elements in array

5

Enter 5 integer(s)

10 20 30 40 50

Enter a number to search

40

40 is present at location 4.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 18

1. C Program to find Mechanical Energy of a particle using E = mgh+1/2 mv2.

ALGORITHM

Step1: Start

Step 2: Initialize or declare variables m,v,h, K,E,P

Step3: Read mass m ,velocity v and displacement h from the user

Step3: calculate Potential energy P E=m*(9.8)*h

Step4: calculate Kinetic energy K E= 0.5*m*v*v

Step5: calculate Mechanical energy E= P.E+K.E

Step6: Print the result

Step7: Stop

SOURCE CODE

#include <stdio.h>

int main()

{

float m,h,v,p,k,e;

printf("Enter Mass of the body\n");

scanf("%f",&m);

printf("Enter displacement of the body\n");

scanf("%f",&h);

printf("Enter velocity of the body\n");

scanf("%f",&v);

p=m*9.8*h; //To calculate Potential energy

k=0.5*m*(v*v); //To calculate Kinetic energy

e=p+k;

printf("Potential energy of the body = %f\n",p);

printf("Kinetic energy of the body = %f\n",k);

printf("Mechanical energy of a body = %f\n" , e);

}

OUTPUT

Enter Mass of the body

100

Enter displacement of the body

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 19

10

Enter velocity of the body

120

Potential energy of the body = 9800.000000

Kinetic energy of the body = 720000.000000

Mechanical energy of a body = 729800.000000

2. C Program to convert Kilometers into Meters and Centimeters.

ALGORITHM

Step1: Start

Step2: Declare the variables km, cm, m.

Step3: Read the distance in Kilometers

Step4: Convert distance to meters, m=km*1000.0

 Convert distance to centimeters, cm=km*100000.0

Step5: Print the result.

Step6: Stop

Source code

#include<stdio.h>

 int main()

{

 float km, cm, m;

 printf("Enter distance in Kilometer\n");

 scanf("%f ", &km);

 m = km * 1000.0;

 cm = km * 100000.0;

 printf("Distance in Meter is %f\n", m);

 printf("Distance in Centimeter is %f\n", cm);

 return 0;

 }

OUTPUT

Enter distance in Kilometer 5

Distance in Meter is 5000.000000

Distance in Centimeter is 500000.000000

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 20

3. Program to check the given character is Lowercase or Uppercase or Special character

ALGORITHM

Algorithm given below to find out that a given character is upper case, lower case, number or

special character.

Step1- Start

Step 2 − Read input character from console at runtime.

Step 3 − Compute ASCII value of the character.

Step 4 − If the ASCII value of the character is in the range of 65 and 90,

Then, print "Upper Case letter".

Step 5 − If the ASCII value of the character is in the range of 97 and 122,

Then, print "Lower Case letter".

Step 6 − If the ASCII value of the character is in the range of 48 and 57,

Then, print "Number".

Step 7 − Else, print "Symbol".

Source Code

#include<stdio.h>

int main()

{

 char ch;

 printf("enter a character:");

 scanf("%c",&ch);

 if(ch >= 65 && ch <= 90)

 printf("Upper Case Letter");

 else if(ch >= 97 && ch <= 122)

 printf("Lower Case letter");

 else if(ch >= 48 && ch <= 57)

 printf("Number");

 else

 printf("Symbol");

 return 0;

}

OUTPUT

Enter a character:A

Upper Case Letter

Enter a character:a

Lower Case letter

Enter a character:@

Symbol

Enter a character:1

Number

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 21

3 Source code

#include<stdio.h>

int main()

{

 char ch;

 /* Input character from user */

 printf("Enter any character: ");

 scanf("%c", &ch);

 /* Alphabet check */

 if(ch >= 'a' && ch <= 'z')

 {

 printf("'%c' is lowercase.", ch);

 }

 else if(ch >= 'A' && ch <= 'Z')

 {

 printf("'%c' is Uppercase.", ch);

 }

 else if(ch >= '0' && ch <= '9')

 {

 printf("'%c' is digit.", ch);

 }

 else

 {

 printf("'%c' is special character.", ch);

 }

 return 0;

}

OUTPUT

 Enter any character: A

'A' is Uppercase.

Enter any character: a

'a' is lowercase.

Enter any character: 2

'2' is digit.

Enter any character: #

'#' is special character.

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 22

4. Program to balance the given Chemical Equation values x, y, p, q of a simple chemical

equation of the type: The task is to find the values of constants b1, b2, b3 such that the

equation is balanced on both sides and it must be the reduced form.

#include<stdio>

int main()

{

int k,l,m,n;

printf(“Enter the atomic nature of rectants x and y ”);

scanf(“%d %d”, &k, &l);

printf(“Enter the atomic nature of products p and q”);

scanf(“%d %d”, &m, &n);

balance(k,l,m,n);

}

int balance(int x, int y, int p, int q)

{

int b1,b2,b3,temp;

if(p%x==0 && q%y==0)

{

b1=p/x;

b2=q/y;

b3=1;

}

else

{

p=p*y;

q=q*x;

b3=x*y;

temp=gcd(p,gcd(q,b3));

b1=p/temp;

b2=q/temp;

b3=b3/temp;}

printf(“the coefficients are b1=%d, b2=%d, b3=%d”,b1,b2,b3);

}

int gcd(int a, int b)

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 23

{

int hcf;

for(int i=1;i<=a && i<=b;i++)

{

if(a%i= =0 && b%i= =0)

{

hcf=i;

 }

}

return hcf;

}

OUTPUT

Enter the atomic nature of reactants x and y : 1 2

Enter the atomic nature of products p and q : 2 3

The coefficients are b1= 4, b2=3, b3=2

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 24

5. Implement Matrix multiplication and validate the rules of

multiplication. Algorithm: Matrix Multiplication

This Algorithm computes and outputs the product of 2 matrices. The input matrices A is of

the order MxN, B is of the order PxQ and the resultant matrix C is of the order MxQ.

M,N,P,Q are of type integers, the loop control variables I,J,K are of types.

Step 1 : [Begin]

Start

Step 2 : [Prompt]

Write(“Enter the order of matrix A”)

Step 3 : [Input order of matrix A]

Read (M,N)

Step 4 : [Prompt]

Write(“Enter the order of matrix B”)

Step 5 : [Input order of matrix B]

Read (P,Q)

Step 6 : [Check for matrix order compatibility]

If (N != P) Then

Write(“Invalid order”)

Stop

End If

Step 7 : [Input elements to matrix A]

Repeat for i 0 to M-1, Increment i in step of 1

Repeat for j  0 to N-1, Increment j in step of 1

Read (A[i][j])

End for

End for

Step 8 : [Input elements to matrix B]

Repeat for i 0 to P-1, Increment i in step of 1

Repeat for j  0 to Q-1, Increment j in step of 1

Read (B[i][j])

End for

End for

Step 9 : [Process]

[Input elements to matrix A]

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 25

Repeat for i 0 to M-1, Increment i in step of 1

Repeat for j  0 to Q-1, Increment j in step of 1

C[I][J]  0

Repeat for K  0 to N-1,

Increment K in step of 1

C [i][j] C[i][j]+(A[i][k] * B[k][j])

End for

End for

End for

Step 10 : [Output elements of matrix A]

Repeat for i 0 to M-1, Increment i in step of 1

Repeat for j  0 to N-1, Increment j in step of 1

Write (A[i][j])

End for

Write (‘\n’)

End for

Step 11 : [Output elements of matrix B]

Repeat for i 0 to P-1, Increment i in step of 1

Repeat for j  0 to Q-1, Increment j in step of 1

Write (B[i][j])

End for

Write (‘\n’)

End for

Step 12 : [Output elements of matrix C]

Repeat for i 0 to M-1, Increment I in step of 1

Repeat for j  0 to Q-1, Increment J in step of 1

Write (C[i][j])

End for

Write (‘\n’)

End for

Step 13: [Finished]

Stop

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 26

Flowchart: Matrix Multiplication

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 27

/*Program 5: Matrix Multiplication*/

#include<stdio.h>

int main()

{

int m,n;

int p,q;

printf("Enter the value of M and N\n");

//input order of matrix A

scanf("%d%d",&m,&n);

printf("Enter the value of P and Q\n");

//input order of matrix B

scanf("%d%d",&p,&q);

//declare, and define arrays a,b,c

int a[m][n];

int b[p][q];

int c[m][q];

//check the matrices order for compatibility

if(n!=p)

{

printf("Invalid order\n");

//finished

return 0;

}

printf("Enter %d elements into matrix A\n",(m*n));

//input elements

for(int i=0;i<m;i++)

for(int j=0;j<n;j++)

scanf("%d",&a[i][j]);

printf("Enter %d elements into matrix B\n",(p*q));

//input elements

for(int i=0;i<p;i++)

for(int j=0;j<q;j++)

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 28

scanf(“%d”,&b[i][j]);

//compute product

for(int i=0;i<m;i++)

{

for(int j=0;j<q;j++)

{

c[i][j]=0;

for(int k=0;k<n;k++)

c[i][j]+=a[i][k]*b[k][j]; //End of inner loop

}

}

//output matrix A

printf("Matrix A\n");

for(int i=0;i<m;i++)

{

for(int j=0;j<n;j++)

{

printf("%-4d",a[i][j]);

}

printf("\n");

}

//output matrix B

printf("Matrix B\n");

for(int i=0;i<p;i++)

{

for(int j=0;j<q;j++)

{

printf("%-4d",b[i][j]);

}

printf("\n");

}

//output resultant matrix C

printf("Matrix C\n");

for(int i=0;i<m;i++)

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 29

{

for(int j=0;j<q;j++)

{

printf("%-4d",c[i][j]);

}

printf("\n");

}

return 0;

}

Output

Enter the value of M and N

2 2

Enter the value of P and Q

2 2

Enter 4 elements into matrix A

1 2 2 1

Enter 4 elements into matrix B

2 4 4 2

Matrix A

1 2

2 1

Matrix B

2 4

4 2

Matrix C

10 8

8 10

Enter the value of M and N

2 3

Enter the value of P and Q

2 2

Invalid order

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 30

6. Compute sin(x)/cos(x) using Taylor series approximation. Compare your

result with the built-in library function. Print both the results with

appropriate inferences.

Algorithm:

TaylorSeries(sin(x))

Step 1: Start

Step 2: [Initialize] Sin_x= 0

Step 3: Read the value of x

Step 4: Convert x to radians (x*3.14/180)

Step 5: Compute sin(r)

for(j=1; j<=15; j=j+2)

{

neg = neg*(-1);

sin_x = sin_x + ((pow(r, j)/fact(j))*neg);

 print built-in value and calculated value

}

Step 6: Stop

Flowchart: Taylor Series

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 31

/*Program6:Taylor

Series(sin(x))*/

#include<stdio.h>

#include<math.h>

 #define PI 3.142

int main()

{

int i, degree;

float x, sum=0,term,nume,deno;

printf("Enter the value of degree");

scanf("%d",°ree);

x = degree * (PI/180); //converting degree into radian

 nume= x;

deno= 1;

i=2;

do

{ //calculating the sine value.

term = nume/deno;

 nume = -nume*x*x;

deno = deno*i*(i+1);

sum=sum+term;

 i=i+2;

} while (fabs(term) >= 0.00001); // Accurate to 4 digits

printf("The sine of %d is %.3f \n", degree, sum);

printf("The sine function of %d is %.3f", degree, sin(x));

return 0;

}

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 32

Output

Enter the value in

degree 90

sin(90)=1, by Taylor

series sin(90)=1, by

Built-in function

/*Program6:TaylorSeries(cos(x))*/

#include<stdio.h>

#include<m

ath.h>

#include<flo

at.h> int

main()

{

float

deg=0,nterm,x,rvx;

int i=1;

printf("enter the value in

degree\n"); scanf("%f",&x);

rvx=x;

x=x*(M_PI/

180);

nterm=1;

while(fabs(nterm)>=FLT_EPSILON)

{

deg=deg+nterm;

nterm=-nterm*(x*x)/((2*i-

1)*(2*i)); i=i++;

}

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 33

printf("cos(%g)=%g, by Taylor series\n",rvx,deg);

printf("cos(%g)=%g, by Built-in

function\n",rvx,cos(x)); return 0;

}

OUTPUT

Enter the value in degree 60

cos(60)=0.5, by Taylor series

cos(60)=0.5, by Built-in function

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 34

7. Sort the given set of N numbers using Bubble sort.

Algorithm:

Step 1 : Start

Step 2 : [Enter a number]Read n

Step 3: [Enter the elements]for i=0 to n

read a[i]

Step 4: [print the elements]

for i=0 to n

print a[i]

Step 5: [sort the elements]

/* terminate the inner loop first then update the outer loop]

for i=1 to n [number of passes required]

for j=0 to n-i [access the element in each pass]

 if(a[j]>a[j+1]) then

end for

end if

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

end for

Step 6: [print the sorted elements]

for i=0 to n

print a[i]

Step 7 : Stop

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 35

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 36

Program

#include <stdio.h>

#include <stdlib.h>

void main()

{

int a[50],i,j,temp,n; /* Declaration of the variables*/

 printf("Enter the value of n\n");

scanf("%d",&n); /* Read the size of an array */

printf("Enter the array elements\n");

for(i=0;i<n;i++)

scanf("%d",&a[i]); /* Read the elements */

 printf("The given array elements are \n");

for(i=0;i<n;i++)

printf("%d\t",a[i]);

/* Perform Bubble Sort */

for(i=1;i<n;i++)

{

for(j=0;j<n-i;j++)

{

if(a[j]>a[j+1])

{

 temp=a[j];

 a[j]=a[j+1];

a[j+1]=temp;

}

}

}

printf("\nThe array after sorting\n"); /* Display the array after sorting */

for(i=0;i<n;i++)

printf("%d\t",a[i]);

}

OUTPUT

Enter the value of n : 5

Enter the array elements

15 10 5 25 20

The given array elements are

15 10 5 25 20

The array after sorting

5 10 15 20 25

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 37

8. Write functions to implement string operations such as compare, concatenate,

string length. Convince the parameter passing techniques.

Algorithm

Step 1: Start

Step 2: Read strings s1 and s2

Step 3: Call function string_length(), length1=string_length(s1)

Lenght2= string_length(s2)

Step 4: Display length1 and length2

Step 5: Call function compare_string()

If(compare_string(s1,s2)==0)

Print “Equal Strings”

Else

Print ”Unequal Strings”

Step 6: Call function concatenate(s1,s2)

Step 7: Print “Concatnated String”

Step 8: Stop

Function : string_lenth(char s[])

Step 1: Start

Step 2: Repeat step2 through while(s1[c]!=’\0’)

C++

Return c

End while

Step 3: Stop

Function: compare_strings(char s1[], char s2[])

Step 1: start

Step2: Reapeat step2 through while (s1[c]==s2[c])

If(s1[c]==’\0’||s2[c]==’\0’)

Break;

C++

End while

Step 3: if(s1[c]==’\0’&&s2[c]==’\0’)

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 38

return 0

Else

return 1

Step 4: Stop

Function:Concatenate(char s1[],char s2[])

Step 1: Start

Step 2: Initialize c=0

Step 3: Repeat steps through while(s1[c]!=’\0’)

c++

end while

Step 4: Initialize d=0

Step 5: Repeat step5 through while (s2[d]!=’\0’)

S1[c]=s2[d]

d++

c++

end while

step 6: s1[c]=’\0’

Step 7: Stop

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 39

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 40

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 41

/*Program*/

#include <stdio.h>

#include <stdlib.h>

int compare_strings(char [], char []);

void concatenate(char [], char []);

int main()

{

char s1[1000],s2[1000];

printf("Input a string1\n");

gets(s1);

printf("Input a string2\n");

gets(s2);

int length1 = string_length(s1);

int length2 = string_length(s2);

printf("Length of %s = %d\n", s1,length1);

printf("Length of %s = %d\n", s2,length2);

if (compare_strings(s1, s2) == 0)

printf("Equal strings.\n");

else

printf("Unequal strings.\n");

concatenate(s1,s2);

printf("String obtained on concatenation: \"%s\"\n", s1);

return 0;

}

/* string length function*/

int string_length(char s1[])

{

int c = 0;

while (s1[c] != '\0')

c++;

return c;

}

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 42

int compare_strings(char s1[], char s2[])

{

int c = 0;

while (s1[c] == s2[c])

{

if (s1[c] == '\0' || s2[c] == '\0')

break;

c++;

}

if (s1[c] == '\0' && s2[c] == '\0')

return 0;

else

return 1;

}

void concatenate(char s1[], char s2[])

{

int c, d;

c = 0;

while (s1[c] != '\0')

{

c++;

}

d=0;

while(s2[d]!='\0')

{

s1[c] = s2[d];

d++;

c++;

}

s1[c] = '\0';

}
OUTPUT

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 43

9. Implement structures to read, write and compute average marks and the students

scoring above and below the average marks for a class of N students.

Algorithm

Step 1: Start

Step 2: Create a structure with student including fields usn,name and marks.

Step 3: Initialize the variables countav=0,countbv=0

Step 4: Read the number of students n

Step 5: Read the value of usn, name and marks for the specified no of students using structure

variable s[i] for i=0 to n-1

Step 6: Display the details of students

Step 7: Repeat for i=0 to n-1

Compute sum of the marks

Step 8: Compute the average

Step 9: Repeat for i=0 to n-1

If(s[i].marks>=average)

Print ” Total no of students above average”

Else

Print “ Total number of students below average”

Step 10: Stop

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 44

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 45

/*PROGRAM

#include <stdio.h>

#include <stdlib.h>

struct student

{

char usn[50];

char name[50];

int marks;

} s[10];

void main()

{

int i,n,countav=0,countbv=0;

float sum,average;

printf("Enter number of Students\n");

scanf("%d",&n);

printf("Enter information of students:\n");
// storing information

for(i=0; i<n;i++)

{

printf("Enter USN: ");

scanf("%s",s[i].usn);

printf("Enter name: ");

scanf("%s",s[i].name);

printf("Enter marks: ");

scanf("%d",&s[i].marks);

printf("\n");

}

printf("Displaying Information:\n\n");
// displaying information

for(i=0; i<n; i++)

{

printf("\nUSN: %s\n",s[i].usn);

printf("Name: %s\n ", s[i].name);

printf("Marks: %d",s[i].marks);

printf("\n");

}

for(i=0;i<n;i++)

{

sum=sum+s[i].marks;

}

average=sum/n;

printf("\nAverage marks: %f",average);

for(i=0;i<n;i++)

{
if(s[i].marks>=average)

countav++;

else

countbv++;

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 46

}

printf("\nTotal No of students above average= %d",countav);

printf("\nTotal No of students below average= %d",countbv);

}

OUTPUT

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 47

10. Develop a program using pointers to compute the sum, mean and standard

deviation of all elements stored in an array of N real numbers.

Algorithm

Step1:Start

Step 2: Read n

Step 3: Repeat for i=0 to n-1

Read a[i]

Step 4: ptr=a

Step 5: Repeat for i=0 to n-1

Sum=sum+*ptr

ptr++

Step 6: mean=sum/n

Step 7: ptr=a

Step 8: Repeat for i=0 to n-1

Sumstd=sumstd+pow((*ptr-mean),2)

Ptr++

Step 9: std=sqrt(sumsrd/n)

Step 10: Print sum,mean and standard

deviationStep 11:Stop

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 48

Introduction to C Computer Programming Laboratory (BESCK104E/204E)

Dept. of CSE, KSSEM, Bangalore Page 49

/*Program*/

#include <stdio.h>

#include <stdlib.h>

#include<math.h>

void main()

{
float a[10],*ptr,mean,std,sum=0,sumstd=0;
int n,i;

printf("Enter the no of elements\n");

scanf("%d",&n);

printf("Enter the array elements\n");
for(i=0;i<n;i++)

{

scanf("%f",&a[i]);

}

ptr=a;

for(i=0;i<n;i++)

{
sum=sum+*ptr;

ptr++;

}

mean=sum/n;

ptr=a;

for(i=0;i<n;i++)

{
sumstd=sumstd+pow((*ptr-mean),2);

ptr++;

}

std=sqrt(sumstd/n);

printf("Sum=%.3f\t",sum);

printf("Mean=%.3f\t",mean);

printf("Standard Deviation=%.3f\t",std);

}

Computer Programming Laboratory(21CPL27)

Dept of CSE,KSSEM, Bangalore

