K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CONTENTS

. Front sheet (Cover page)
Vision and Mission of the Department
Syllabus
Calendar of Events
Time table (Individual)
Student list
Lesson plan
Question Bank
CO-PO mapping
10.Assignments (3 Assignments)
11.Internal Question paper and scheme (Set-A & Set-B) (3 Internals)
12.Previous year university question papers
13.Course Materials
- Notes/PPT/ lecture videos/ Materials/other contents related to the subject
14. Additional teaching aid with proof (TPS/flip class/programming etc) (IF ANY)
15.Slow learners and Advanced learners list (after the first internals)
16.Assignments Marks (3 Assignments)
17.Internal Test Marks (3 Internals)
18.Internal Final Marks

1

2;
3.
4.
5.
6.
A
8.
9.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course File

BCS304 DATA STRUCTURES AND APPLICATIONS

III Sem B 2023-24

Facuilty In-charge
BINDUK P
Assistant Professor
Dept. of Computer science and Engineering
K S School of Engineering & Management, Bangalore

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT

VISIONl

To impart quality education in engineering and management to meet technological, business and
societal needs through holistic education and research.

K.S. School of Engineering and Management shall,

Establish state-of-art infrastructure to facilitate effective dissemination of technical and

Managerial knowledge.

e Provide comprehensive educational experience through a combination of curricular and
Experiential learning, strengthened by industry-institute-interaction.

e Pursue socially relevant research and disseminate knowledge.

e Inculcate leadership skills and foster entrepreneurial spirit among students.

Department of Computer Science and Engineering

VISIONl

To produce quality Computer Science professional, possessing excellent technical knowledge,

skills, personality through education and research.

Department of Computer Science and Engineering shall,

¢ Provide good infrastructure and facilitate learning to become competent engineers
who meet global challenges.

o Encourages industry institute interaction to give an edge to the students.

e Facilitates experimental learning through interdisciplinary projects.

e Strengthen soft skill to address global challenges.

DATA STRUCTURES AND APPLICATIONS Semester 3
Course Code BCS304 CIE Marks 50
Teaching Hours/Week (L: T:P: S) 3:0:0:0 SEE Marks 50
Total Hours of Pedagogy 40 Total Marks 100
Credits 03 Exam Hours 3
Examination type (SEE) Theory

Course objectives:

CLO 1. To explain fundamentals of data structures and their applications.

CLO 2. To illustrate representation of Different data structures such as Stack, Queues, Linked
Lists, Trees and Graphs.

CLO 3. To Design and Develop Solutions to problems using Linear Data Structures

CLO 4. To discuss applications of Nonlinear Data Structures in problem solving.

CLO 5. To introduce advanced Data structure concepts such as Hashing and Optimal Binary
Search Trees

Teaching-Learning Process (General Instructions)
Teachers can use following strategies to accelerate the attainment of the various course outcomes.

1. Chalk and Talk with Black Board
2. ICT based Teaching
3. Demonstration based Teaching

Module-1 8Hours

INTRODUCTION TO DATA STRUCTURES: Data Structures, Classifications (Primitive
& Non-Primitive), Data structure Operations

Review of pointers and dynamic Memory Allocation,

ARRAYS and STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures and Unions,
Polynomials, Sparse Matrices, representation of Multidimensional Arrays, Strings
STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of Expressions
Text Book: Chapter-1:1.2 Chapter-2: 2.1 to 2.7 Chapter-3: 3.1,3.2,3.6

Reference Book 1: 1.1 to 1.4

Module-2 8Hours

QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.
LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked
Stacks and Queues, Polynomials

Text Book: Chapter-3: 3.3, 3.4, 3.7 Chapter-4: 4.1 to 4.4

Module-3 8Hours

LINKED LISTS : Additional List Operations, Sparse Matrices, Doubly Linked List.
TREES: Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees.
Text Book: Chapter-4: 4.5,4.7,4.8 Chapter-5:5.1t05.3,5.5

Module-4 8Hours

TREES(Cont..): Binary Search trees, Selection Trees, Forests, Representation of Disjoint
sets, Counting Binary Trees,

GRAPHS: The Graph Abstract Data Types, Elementary Graph Operations

Text Book: Chapter-5: 5.7 to 5.11 Chapter-6: 6.1, 6.2

Module-5 8Hours

18.09.2023

HASHING: Introduction, Static Hashing, Dynamic Hashing

PRIORITY QUEUES: Single and double ended Priority Queues, Leftist Trees
INTRODUCTION TO EFFICIENT BINARY SEARCH TREES: Optimal Binary Search
Trees

Text Book: Chapter 8: 8.1 t0 8.3 Chapter 9: 9.1,9.2 Chapter 10: 10.1

Course outcome (Course SKkill Set)

At the end of the course the student will be able to:

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-world problem.

CO 5. Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal
Binary Search Trees.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is
50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50)
and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A
student shall be deemed to have satisfied the academic requirements and earned the credits
allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100} in
the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination)
taken together.

Continuous Internal Evaluation:

o For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment
Test component, there are 25 marks.

e The first test will be administered after 40-50% of the syllabus has been covered, and the
second test will be administered after 85-90% of the syllabus has been covered

e Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then
only one assignment for.the course shall be planned. The teacher should not conduct two -
assignments at the end of the semester if two assignments are planned.

e For the course, CIE marks will be based on a scaled-down sum of two tests and other methods

of assessment.
Internal Assessment Test question paper is designed to attain the different levels of Bloom's
taxonomy as per the outcome defined for the course.

Semester-End Examination:
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers
for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a

maximum of 3 sub-questions), should have a mix of topics under that module.
3. The students have to answer 5 full questions, selecting one full question from each module.
4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:
Textbook:
1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures
in C. 2™ Ed, Universities Press, 2014

.

18.09.2023

Reference Books:

1.

Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1* Ed, McGraw Hill,
2014.

Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2™ Ed, Cengage
Learning,2014.

Reema Thareja, Data Structures using C, 3™ Ed, Oxford press, 2012.

Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with
Applications, 2a¢ Ed, McGraw Hill, 2013

A M Tenenbaum, Data Structures using C, PHI, 1989

Robert Kruse, Data Structures and Program Design in C, 2™ Ed, PHI, 1996.

Web links and Video Lectures (e-Resources):

http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html
https://nptel.ac.in/courses/106/105/106105171/
http://www.nptelvideos.in/2012/11/data-structures-and-algorithms.html
https://www.youtube.com/watch?v=3X06P_V-qns&t=201s
https://ds2-iiith.vlabs.ac.in/exp/selection-sort/index.html
https://nptel.ac.in/courses/106/102/106102064/
https://ds1-iiith.vlabs.ac.in/exp/stacks-queues/index.html
https://ds1-iiith.vlabs.ac.in/exp/linked-list/basics/overview.html
https://ds1-iiith.vlabs.ac.in/List%200{%20experiments.html
https://ds1-ilith.vlabs.ac.in/exp/tree-traversal/index.html
https://ds1-iiith.vlabs.ac.in/exp/tree-traversal /depth-first-traversal /dft-practice.html

https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013501595428077568125
59/overview

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Role Play
Flipped classroom

Assessment Methods for 25 Marks (opt two Learning Activities)
o Case Study
o Programming Assignment
o Gate Based Aptitude Test
o MOOC Assignment for selected Module

18.09.2023

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT

BENGALURU-560109

TENTATIVE CALENDAR OF EVENTS: IIl ODD SEMESTER (2023-2024)
SESSION: NOV 2023 TO FEB 2024

Week Day —
No. Month Mon Toe Activities
1 NOV 15*-Commencement of III sem
2 NOV 20 21 25- Wednesday Time Table
3 NOV/DEC 27 28 30- Kanakadasa Jayanti
4 DEC 4 5 9- Tuesday Time Table
5 DEC 11 12
6 DEC 23- Monday Time Table
25- Christmas
7 DEC 27T1 28T1 29 S0 30 - Monday Time Table
8 JAN 3 4 5
N 10 - First Faculty Feed Back
? i 10 *FFB1 B N . 13- Tuesday Time Table
10 JAN 17 18 19 15- Makara Sankranti
: 26 - Republic Day
1y JaN 24 &2 27TZ | 5 |37 Monday Time Table
12 | JaN/FEB | 29T2 | 30T2 31 1 2
‘ e H._lll - ‘;;ﬂ-n--.-r -a.‘—'-r.= '
3 FEB 5 6 7 8 9 10 v Lkt o
A
%
14 FEB 12 13 14 15 16 TI;FB 16 - Second Faculty Feed Back
: 19 BV | 20*asD i
15 FEB 20* - Last working Da
T3 T3 g Lay
Total No of Working Days : 73
Total Number of working days (Excluding holidays and Tests)=63
H Holiday Monday 13
BV |Blue Book Verification Tuesday 14)< (e /Z _
T1,T2 |Tests 1,2 Wednesday 13 SIGNATURE OF PRIN -
n Dr. K. RAMA NARASIMHA
ASD AFtendance & Sessional Thursday 11 KS Sdmﬂzﬂ:;ﬂnn?:‘n:ruamgamem
Dignlav Bengaluru - 560 10D
DH |Declared Holiday Friday 12
LT |Lab Test Total 63
TA Test attendance

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-56010¢
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SESSION: 2023-2024(ODD SEMESTER)

(w.e. f:15/11/2023)
INDIVIDUAL TIME TABLE

Class: [I[TA & B Faculty Name: Mrs. Bindu K P
DAY 8.40-9.35 |9.35-10.30 | 10.30-10.45 10.45 -11.40 11.40-12.35 (12.35-1.20 1.20 -2.10 2.10-3.00 3.00-3.50
MONDAY I(%")F DSC Lab Batch - Bl
DSC 10T
TUESDAY (111 B) (B) DSC Lab Batch - B2
DSC DSC 10T LUNCH
WEDNESDAY (Ill B) TEA (Il B) (B) BREAK DSC Lab Batch - Al
THURSDAY (13151(3:) BREAK DVP DVP Lab Batch - Al
10T :
FRIDAY (B) DSC Lab Batch - A2
SATURDAY AS PER CALENDAR OF EVENTS
CODE SUBJECT Hours /Week
BCS304 Data Structures and Application 4
BCSL305 Data Structures Laboratory 4 .
: Mrs. Bindu K P
BCS358D Data Visualization with Python Laboratory 4
BETCKI105H |Introduction to Internet of Things 4
18CSP77 Project Work Phase -1 1.5

@ l'ﬁr.K.hAMANAIf{ASI HA
TimeNaDl: Cositimator Dugorment diffeanof heDepartiient 9 Prifgiputipiector)
K.S School6f Engineering & Managetgnt K & School of Engineering and/M Ragem

=% Ranaalara-560108 o S

g DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
KSSEM SESSION: 2023-2024 (ODD SEMESTER)
CLASS TIME TABLE
(w.e.f. 25/10/2023)

;@ K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109

Class: 111 CSE 'B' Lecture Hall: Li1- 405 Class Teacher: Mrs. Bindu K P
DAY 8.40-9.35 9351030 | 03 | 10451040 | 10401235 | 1235120 | 120200 2.10-3.00 3.00-3.50
DDCO DSC Lab Batch - Bl DVP DVP Lab Batch - Bl
HTORDRY (BCS302) DDCO Lab Batch - B2 ll] (BCS358D) | OOPS with Java Lab Batch - B2
—— oS DSC T MAT- 111 PDCO N DSC Lab Batch - B2
(BCS303) (BCS304) E (BCS301) (BCS302) c DDCO Lab Batch - Bl
\WEDNESDAY DSC oS & DSC MAT- III . OOPS OS Lab Batch - Bl
(BCS304) (BCS303) B (BCS304) (BCS301) B (BCS306A) SCR-B2
THURSDAY DSC . 0S R DVP Lab Batch - B2 l; 0OPS MAT- II1 .
(BCS304) (BCS303) E OOPS with Java Lab Batch - Bl] (BCS3064) (BCS301) (BCS302)
FRIDAY 1H1S8) BOOPS Q 0s MAT- IIL K OOPS OS Lab Batch - B2
(BCS302) (BCS306A) (BCS303) (BCS301) (BCS306A) SCR-B1
SATURDAY AS PER CALENDAR OF EVENTS
CODE SUBJECT %’ggs STAFF
BCS301 Mathematics for Computer Science 4 Dr. Lakshmi B
BCS302 Digital Design & Computer Organization 4 Ms. Nethravathi K G
BCS302 Digital Design & Computer Organization Laboratory 4 Ms. Nethravathi K G & Mrs. Jayashubha J
BCS303 Operating Systems 4 Mrs. Chhaya S Dule
BCS303 Operating Systems Laboratory 2 Mrs. Chhaya S Dule
BCS304 Data Structures and Application 4 Mrs. Bindu K P
BCSL305 |Data Structures Laboratory 3 Mrs. Bindu K P & Mrs. Kavitha K S
BSCK307 Social Connect and Responsibility 2 Mrs. Sougandhika Narayan
BCS306A OOPS with Java 4 Mrs. Anujna M
BCS306A OOPS with Java Laboratory 2 Mrs. Anujna M & Mrs. Chhaya S Dule
BCS358D Data Visualization with Python Laboratory 3 Mrs. Jayashubha J & Mrs. Bindu KP

H%. (A~ 4R it
Tiieta oordinator r . e oi e Sihe Depa rrﬁt .. Priftrival(BIrector
ERI ST RO i3 b1 R dvd g T8 PR ED 1

!

R.S Schoal of Engincering & Manageo. K S School of Engineering and Managemer
Bangalore-5G0109 Bengaluru - 560 109

Qw8 o

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU -560 019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (ODD SEMESTER)
Il Semester - B Student List

13:)'. USN Name of the Student
1 IKG22CS064 |MAHALAKSHMIP S

2 1KG22CS065 |MANSIM

3 [KG22CS066 |MARINENI HANSIKA

4 1KG22CS067 |MARPURI SOWMYA

MOHAMMAD SAMI SHAKIL

5 1KG22CS068 AHMAD SAYYAD

6 1KG22CS069 [MOHITH REDDY K

7 1KG22CS070 |MONIKA K

8 1KG22CS071 IMUMMANEDI MEGHANA
9 1KG22CS072 |MUTHULURI DHEEKSHITH
10 1KG22CS073 |[NISHANTH R

11 1KG22CS074 |NISWANA N SWAMY

12 1KG22CS075 |NITHISH KUMAR V

13 1KG22CS076 |NIVEDA B

14 IKG22CS077 |P HARSHITHA

13 1KG22CS078 |PADMASHREE M M

16 1KG22CS079 |PAPANI DEVISH CHOWDARY
17 IKG22CS080 |PAVAN KUMAR

18 1KG22CS081 [PAVANTL

19 1KG22CS082 |PAVAN U

20 1KG22CS083 |PEDDINTI MOHAMMAED
21 1KG22CS084 |POOJA S

22 1KG22CS085 |POOJITHA S

23 1KG22CS086 |PRAGNAP S

24 1KG22CS087 |PRAJWALKOQUSHIK C

25 1KG22CS088 |PRANAYV RAMESH

26 1KG22CS089 |PRAPUL U

27 IKG22CS090 [PRIYARK

28 1KG22CS091 |PUNITH B

29 1KG22CS092 |R PRUDVI GANESH

30 1KG22CS093 |RAGHU KISTHANNAVAR
31 1KG22CS094 |RAKESH V

32 IKG22CS095 |RAKSHITHA N

33 IKG22CS096 |RAKSHITHA S

34 1KG22CS097 |RAKSHITHA S

35 1KG22CS098 |RAMITHA K

36 IKG22CS099 |RAMYA P

37 1KG22CS100 |RANI

38 1KG22CS101 |RAYAN NADEEM

39 1KG22CS102 |SADHVIKA GODAVARTHI
40 1KG22CS103 [SAKESH P

41 IKG22CS104 |SANJANA B

42 1KG22CS105 [SANJAY M D

43 [KG22CS106 |SANJAY S

44 1KG22CS107 |SANTOSH KUMAR NAGUR

45 1KG22CS108 |SARANR

46 1IKG22CS109 |SHASHANK

47 IKG22CS110 |SHASHANK D URS

48 1KG22CS111 [SINDHUSHREE K

49 1KG22CS112 |SOWJANYAK S

50 1KG22CS113 |SUHAS S

51 IKG22CS114 |TKAVYA

52 1KG22CS115 |TAANISH M

53 IKG22CS116 |TARUNR

54 1KG22CS117 |TEJASWINIR M

55 1KG22CS118 |THIRUVIDULA ABHISHEK
TIRUCHANURU VENKATA

56 1KG22CS119 PRANEETH

57 1KG22CS120 |TOLUCHURU HARITHA

58 1KG22CS121 |UDAY KIRAN

59 1KG22CS122 |VANDANA BASAVARAJ PATIL

60 1KG22CS123 |VINAYAK C

61 1KG22CS124 |[VISMAYA N

62 1KG22CS125 |YASHWANTHR

3 1KG21CS020 |BHOOMIKA P DESAI
64 VENKATACHAL S
65 Lateral Students |RAJESH P C

66

Suhas Madhusudan Shandilya

K.S. SCHOOL OF ENGINEERING AND MANAGEMEN T, BENGALURU- 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)

LESSON PLAN
NAME OF THE STAFF : Mrs. Bindu K P
SUBJECT CODE/NAME : BCS304 / Data Structures and Applications
SEMESTER/ SEC/YEAR :III/B/II (CSE)
Cumulative
Sl.) Mode of)) No. of Proposed Engaged
No Topic to be covered Delivery Teaching Aid Periods N 0.. of Date Date
Periods
MODULE 1]
INTRODUCTION TO DATA STRUCTURES:)]
| Data Structures, Classifications (Primitive& Non- L+D LCD 1 1 15/11/23 IS/t]24
Primitive), Data structure Operations
2 | Review of pointers and dynamic Memory Allocation | L+D LCD 1 2 15/11/23 ISP
3 | ARRAYS and STRUCTURES: Arrays, Dynamic L+D LCD 1 3 16/11/23 l6) | 27
Allocated Arrays
4| Structures and Unions LD LCD 1 4 2111723 o\ nlar
5 | Polynomials, Sparse Matrices L+D LCD 1 5 22/11/23 20 (los
6 | Representation of Multidimensional Arrays, Strings L+D LCD 1 6 22/11/23 224 n(22
7 | STACKS: Stacks, Stacks Using Dynamic Arrays L+D LCD 1 7 23/11/23 23\ufa
8 | Evaluation and conversion of Expressions L+D LCD 1 8 2511123 o<\ 2R
251123 [26\u{nR
9 | Tutorial L+D LCD 3 3 28/11/23 o)
2911723 |2 \nl2=

MODULE 2

10 | QUEUES: Queues L+D LCD 9 29/11/23 <) l?;) 2%
11 | Circular Queues, Using Dynamic Arrays L+D LCD 10 5/12/23 Tlj23
12| Multiple Stacks and queues L+D LCD 1 6/12/23 é\lindn s
13 | LINKED LISTS : Singly Linked LD LCD 12 6/12/23 o \2123
14 | Lists and Chains L+D LCD 13 7/12/23 1R\ 2)2%
15 | Representing Chains in C L+D LCD 14 9/12/23 \a)\ 2423
16 | Linked Stacks and Queues L+D LCD 15 12/12/23 la\inius
17 | Polynomials L+D LCD 16 13112723 1o 12423
1312723 201121273
18 | Tutorial L+D LCD 3 14/12/23 =S
191223 |22 12128
MODULE 3
19 | LINKED LISTS : Additional List Operations L+D LCD 17 20/12/23 o 1212
20 | Sparse Matrices L+D LCD 18 20/12/23 2o\ 12123
21 | Doubly Linked List L+D LCD 19 21/12/23 a2
22 | Doubly Linked List L+D LCD 20 2/1/24 1ol \\2$
23 | TREES: Introduction L+D LCD 21 3/1/24 o\l \ l&
24 | Binary Trees L+D LCD 22 311724 uiy) l%
25 | Binary Tree Traversals L+D LCD 23 4/1/24 12) | |23
26 | Threaded Binary Trees L+D LCD 24 9/1/24 e\t \ 28
: 10/1/24 :
27 | Tutorial L+D LCD 2 T/l 17 \\ \Q;g'

MODULE 4

28 | TREES(Cont..): Binary Search trees L+D LCD 25 11/1/24 1el | | 24
29 | Selection Trees L+D LCD 26 13/1/24 22_\ ”2_*
30 | Forests L+D LCD 27 161724 121y)) 2y
31 | Representation of Disjoint sets L-D LCD 28 1771724 2u\ i) 2wy
32 | Counting Binary Trees L+D LCD 29 1771724 257) \Lq
33 | GRAPHS: The Graph Abstract Data Types L+D LCD 30 18/1/24 2oly)2
34 | Elementary Graph Operations L+D LCD 31 23/1/24 ERRIPAYE
35 | Elementary Graph Operations L+D LCD 32 24/1/24 %) 2)24
36 | Tutorial L+D LCD 2 24/124) 3[2 |24

25/1/24 “

MODULE 5

37 | HASHING: Introduction L+D LCD =3 31124 2022y
38 | Static Hashing L+D LCD 34 3171724 26\)4 AT}
39 | Dynamic Hashing L+D LCD 35 17224 202}y
40 | PRIORITY QUEUES: Single Priority Queue L+D LCD 36 6/2/24 2)) 2y
41 | Double ended Priority Queues L+D LCD 37 72124 2122y
42 | Leftist Trees L+D LCD 38 7224 3 2) 2‘2_[{
[EEmC IR | v | o N B S
44 | Optimal Binary Search Trees L+D LCD 40 132224 23] 2) 2y

14/2/24 27)2) 2y
45 | Revision L+D LCD 3 14224 | 2&|2)2y

15224 |22\

Week Remarks

Assignment 1 4" Week — 14/12/23
Mode of Assignment — Written Assignment

| Assignment 2 9™ Week- 18/1 /24

Total No. of Lecture Hours = 40
Total No. of Tutorial Hours =13

ourse in charge l‘{t&/&}}l of the Department IQAC Coordinator Principal
HO K. RAMA NARASIMA~
Department of Computer Science Engineering ' pﬁncianDirector .
K.S School of Engineering & Managemicnt of Engineering and Manag+ -
Bangalore-560109 K § School 560 109

: — Bengaluru -

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)
DATA STRUCTURES AND APPLICATIONS (BCS304)
Question bank-1
Module-1

1. Define data structures. With a neat diagram, explain the different classifications of Data structures.

2. Define structure. How it is represented in C language. Give an example program using structures.

(o8]

. Differentiate structure and union.
4. What are self-referential structures? Give one example.
5. Define nested structure. Give 2 ways of declaring nested structure with example program.

6. Give Abstract Data Type(ADT) for arrays. How array can be declared and initialized?

-~

- Define Array. Explain with program, the operations performed on array.

50

Assume each student in a class of 25 students is given 4 test . Assume the students are numbered from 1 to 25
and the test scores are assigned in the 25*4 matrix called score. Assume base of score=200 ,W=4 and the
programming language uses row major order and column major order to store this 2D array then find the

address of 3rd test of 12th student (i.e)score[13,3] in both row major order and column major order .

9. Develop C programs to perform each of the following (i) linear search (ii) binary search (iii)bubble sort
taking a array of ‘n’ integers.

10. Develop an algorithm for Bubble sort and Apply for the following data 40,3,20,35,50,31,5,6

I'l. Which are the 4 inbuilt functions to perform dynamic memory allocation. Discuss the importance of
Dynamic memory allocation. Write a C program to create an array dynamically.

12.Develop a C function to create 2d array dynamically. Use MALLOC macro.

13. Ilustrate with an example how sparse matrix is efficiently stored in triple format. Write its C

representation.
14. Define String. Write a C program to perform pattern matching.

15. Develop a function to perform polynomial addition.

16. Find the table and corresponding graph for the second pattern matching algorithm where the Pattern is ababab

17.
18.

19.
20.
21,
22.
23.
24,
25.

W

0.

Define Stack. List the operations performed on Stack.

Develop a ¢ program to demonstrate various stack operations, including cases for overflow and underflow of

STACK.

Develop an algorithm to convert infix expression to postfix expression.
Convert the following expression to postfix using stack (at+b)*((b"c)*f)/g
Define Recursion. THlustrate with an example how stack is used in recursion.
Define Recursion and Evaluate A(1,3) using Ackermann'’s function.

Develop an algorithm for Evaluation of postfix expression.

Develop a C function to evaluate posttix expression.

Develop a Recursive C program for each of the following:

a. Tower of Hanolt

b. Computing GCD of two numbers

c. Fibonacci series

d. To compute factorial of N

Module-2

Define Queue Implement the operations of the queue using arrays. Apply the same on job scheduling.
Show how gueues are represented using arrays?

Explain queues operations using dynamic arrays.

Give the disadvantage of the ordinary queue and how it is solved in a circular queue. Explain with a suitable

example of how you would implement a circular queue using a dynamically allocated array.
What is a circular queuc? Explain how it is difterent from the lincar queue.
Discuss the following:

) Double Ended Queue

2) Priority Queuc

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)
DATA STRUCTURES AND APPLICATIONS (BCS304)

Question bank-2

Module-2
Queues
. Define Queue. Implement the operations of the queue using arrays. Apply the same on job scheduling.
. Show how queues are represented using arrays?
. Explain queues operations using dynamic arrays.

. Give the disadvantage of the ordinary queue and how it is solved in a circular queue. Explain with a suitable

example of how you would implement a circular queue using a dynamically allocated array.

. What is a circular queue? Explain how it is different from the linear queue.

Linked List

. Describe doubly linked list with advantages and disadvantages. Write a C function to delete a node from a
doubly linked list. Ptr is the pointer which points to the node to be deleted.

. Define linked list. Write the representation of linked lists in memory.

. How the nodes are represented using C?

. Explain linked list operation with examples.

. Write a note on a header linked list.

. Briefly explain linked stack and queue.

. Apply alinked list to represent two polynomials and write a function to add the polynomials using the linked

list.

Module-3
Linked List

. What is doubly linked list. Write the declaration of doubly linked list in C.
. With the C program explain how the elements are inserted and deleted from a doubly linked list

. List out any two applications of the linked list and any two advantages of doubly linked list over the singly
linked list.

. Write a short note on circular lists. Write a function to insert a node at the front and rear end in a circular

linked list. Write down the sequence of steps to be followed.
. Write the following functions for singly linked list: i) Reverse the list ii)Concatenate two lists.

. What is a linked list? Explain the different types of linked lists with a diagram. Write C program to implement
the insert and delete operation on a queue using a linked list.

. Explain the sparse matrix using Linked list. Write a node structure for linked representation and apply it for the

\

1025 0 0 O

following Matrix

0 230 45 0
0 0 0 0 32
A= 42 0 0 31 0

0 00 0 o
0 0300 O
. S
Trees

. Define the following and illustrate with suitable examples

i) Binary tree ii) Full binary tree iii) Almost complete binary tree
iv) Strict binary tree v) Skewed binary tree
- Develop an algorithm for binary tree traversal techniques and apply the same for the following tree

(¥
(=) (<)
offo

3. Demonstrate the Array and Linked representation of binary tree with suitable examples.

ar

Explain insertion in to a Threaded binary tree with neat diagram and also develop a C function to do the
inorder traversal of a threaded binary tree.

Ilustrate Threaded binary tree and their representation with suitable neat diagram.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)
DATA STRUCTURES AND APPLICATIONS (BCS304)
Question Bank-3
Module-4&5

1. Construct a binary search tree for the given datal00, 85, 45, 55, 110, 20, 70, 65.
Develop a C function to inserting an element into Binary search tree.

2. Develop a C function for DFS and apply it for the following graph

N =5

POS0S=0)

b fl. B,
W, (¢)

3. Define Selection Tree. Illustrate Winner Tree and Loser Tree with suitable example.

4. Define Binary search tree. Construct a binary search tree by using the following
preorder and in-order traversals:
Preorder : ABCDEFGHI
Inorder : BCAEDGHFI
5. Define graph. Illustrate the following with suitable examples
a. Adjacency matrix
b. Adjacency List
¢. Adjacency Multilist
6. Explain Union and Find operations. Develop Union function using Weighting rule
illustrate with suitable example.
7. Define Hashing? Illustrate different Hashing functions with an example.
8. Define Leftist Tree. Demonstrate Height biased leftist tree and Weight biased leftist
tree.
9. Define collision? List different methods to resolve collision? Demonstrate linear
probing with an example.

10. Define Hashing? Illustrate Dynamic Hashing with an example.

11. Define Binary Search Tree. Develop a C function to perform searching in a Binary
search Tree.

12. Explain Selection Tree. Construct Winner Tree and Loser Tree for the following 16,
9,20,6,50,11,90, 18

13. For the given graph show the adjacency matrix and adjacency list representation

14. Develop a C routine to print the reachable nodes of a graph from the source node
using Breadth First Search and also illustrate with a suitable graph.

15. Ilustrate with suitable example
a) Graph b) Connected components
¢) Spanning Tree d) Biconnected components

16. Define collision. List different overflow handling techniques? Demonstrate chaining
with an example

17. Explain motivation for dynamic hashing, Illustrate dynamic hashing using
directories and directoryless dynamic hashing.

18. Develop a search function for linear probing. Apply division method and solve
collision (if any) by using linear probing. Given key elements are: 72, 27, 36, 24, 63,
81, 92, 101 size of the hash table is 10.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CO-PO Mapping

Course; Data Structures and Applications

Type: Professional Core Course | Course Code: BCS304

No of Hours
Tiieory ' Practical/F 'ield
Tutorials Work/Allied Total/Week Total hours of Pedagogy

(Lecture Class) il :
Activities -

3 0 0 3 40

Marks
CIE SEE Total Credits
50 50 100 3

Aim/Objectives of the Course

1. To explain fundamentals of data structures and their applications

To design and develop solutions to problems using linear Data Structures.

2
3.
4. To discuss applications of Nonlinear Data Structures in problem solving
5

Trees.

To illustrate representation of data structures: Stack, Queues, Linked Lists, Trees and Graphs.

To introduce advanced Data structure concepts such as Hashing and Optimal Binary Search

Course Learning Outcomes
After completing the course, the students will be able to

Apply the basic data structures concepts such as arrays, structures, unions, .
CO1 | pointers, strings and dynamic memory allocation function to solve simple | Applying (K3)
problems. Make use of stacks to evaluate mathematical expression.
CO2 | Apply the concept of queues and linked list in problem solving. Applying (K3)
CO3 Utilize l_inked list for implementation of list operations, doubly linked list and Applying (K3)
sparse matrix, and apply tree traversal method, threaded binary tree.
CO4 Make use of binary search tree, selection trees and forests and graph to solve Applying (K3)
real world problems.
Analyze advanced Data Structures concepts such as Hashing Techniques 5
Chs | and OptimalBinary Search Trees. Applying (K3)
Syllabus Content
MODULE 1 : INTRODUCTION TO DATA STRUCTURES: Data CO1
Structures, Classifications (Primitive & Non-Primitive), Data structure
Operations . -~ 8 hrs
Review of pointers and dynamic Memory Allocation, POL-1
ARRAYS and STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures P02:3
and Unions, Polynomials, Sparse Matrices, representation of Multidimensional PO3-3

|

Arrays, Strings. PO4-3
STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of P1862-]1
Expressions. PSO1-3
LO: At the end of this session the student will be able to PSO2-1
1. Understand the basic data structures concepts.
2. Analyze the stack operations, dynamic memory allocation and Structures.
3. Understand the sparse matrix and evaluation and conversion of expressions.
CcO2
MODULE 2 : QUEUES: Queues, Circular Queues, Using Dynamic
Arrays, Multiple Stacks and queues. 8 hrs.
LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains
in C, Linked Stacks and Queues, Polynomials POI-1
PO2-3
. . . PO3-3
LO: At the end of this session the student will be able to PO4-3
1. Analyze Queue operations using dynamic arrays. PO6-1
2. Understand the concepts of linked list and chains. PO12-1
3. Solve simple problems on linked list such as polynomials. PSOL1-3
PSO2-1
Co3
MODULE 3: LINKED LISTS : Additional List Operations, Sparse Matrices,
Doubly Linked List. 8 hrs
TREES: Intrcduction, Binary Trees, Binary Tree Traversals, Threaded Binary POL-I
Treex. PO2-3
LO: At the end of this session the student will be able to PO3-3
I, Understand the concepts of doubly linked list and Trees terminologies. ggg'i
i 2. Solve binary tree traversals. PO12-1
3. Solve simple problems on linked list such as sparse matrix. PSO1-3
- PSO2-1
CO4
MODULE 4: TREES(Cont..): Binary Search trecs, Selection Trees, 8 hrs
Forests, Representation of Disjointsets, Counting Binary Trees,
GRAPHS: The Graph Abstract Data Types, Elementary Graph Operations POI-1
LO: At the end of'this session the student will be able to ggg:g
I. Undersiand the Binary Search trees, Forests and counting Binary trees. PO4-3
2. Undersiand the graph terminologies. PO6-1
3. Analyze elementary Graph operations POI12-1
PSO1-3
PSO2-1
MODULE 5: HASHING: Introduction, Static Hashing, Dynamic Hashing Cos
PRIORITY QUEUES: Single and double ended Priority Queues, Leftist
Trees ‘ 8hrs
INTRODUCTION TO EFFICIENT BINARY SEARCH TREES: Optimal ot
Binary Search Trees. P02:3
. i , PO3-3
LO: At the end of this session the student will be able to PO4-3

1. Understand hashing technique.

PO6-1

2. Analyze Single and double ended priority queues, leftist trees. PO12-1
3. Understand Optimal Binary search Trees. PSO1-3
PSO2-1

Text Books

1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2™ Ed, Universities Press,
2014,

Reference Books (specify minimum two foreign authors text books)

1. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

2. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage
Learning,2014.

3. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

4. Jean-Paul Tremblay & Paul G. Sorenson, An Intreduction to Data Structures with Applications, 2nd
Ed, McGraw Hill, 2013

5. A M Tenenbaum, Data Structures using C, PHI, 1989

6. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

Useful Websites
e http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html

httpsy//nptel.ac.in/courses/106/105/106105171/
http://www.nptelvideos.in/2012 /11 /data-structures-and-algorithms.html
https://www.youtube.com/watch?v=3X06P_V-qns&t=201s
https://ds2-iiith.vlabs.ac.in/exp/selection-sort/index.html
https:7 /nptel.ac.in/courses/106/102/106102064/
https://ds1-iiith.vlabs.ac.in/exp/stacks-queues/index.html
httpsy//ds1-ilith.vlabs.ac.in/exp/linked-list/basics/overview.html
https://ds1-iiith.vlabs.ac.in/List%200f%20experiments.html
https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/index.html
https://ds1-iiith.vlabs.ac.in/exp/tree-traversal /depth-first-traversal/dft-practice.html
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013501595428077568125
59/overview

Teaching and Learning Methods
1. Lecture class: 40 hrs

Assessment Details (both CIE and SEE);

The weightage of Continuous Internal Evaluation (CIE) is 50%.and for Semester End Exam (SEE)
is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of
50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).
A student shall be deemed to have satisfied the academic requirements and earned the credits
allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in
the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination)
taken together.

Continuous Internal Evaluation:

e For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment
Test component, there are 25 marks.

o The first test will be administered after 40-50% of the syllabus has been covered, and the second
test will be administered after 85-90% of the syllabus has been covered

e Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then
only one assignment for the course shall be planned. The teacher should not conduct two
assignments at the end of the semester if two assignments are planned.

e For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of
assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom’s
taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by the University as per the scheduled timetable, with common
question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks. 2. There will be 2
questions from each module. Each of the two questions under a module (with a maximum of 3
sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.
Marks scored shall be proportionally reduced to 50 marks.

CO to PO Mapping

PO1: Science and engineering PO7:Environment and Society
Knowledge PO8§:Ethics
PO2: Problem Analysis PO9:Individual & Team Work

. - PO10: Communication
ggi:IDemg.n & Deve;op menic PO11:Project Mgmt. & Finance

:Investigations of Complex PO12: Lifelong Learning
Problems

POS: Modern Tool Usage
PO6: Engineer & Society

PSO1: Understand fundamental and advanced concepts in the core areas of Computer Science and
Engineering to analyze, design and implement the solutions for the real world problems.
PS02: Utilize modern technological innovations efficiently in various applications to work

towards the betterment of society and solve engineering problems.

CO | po |po1| P02z | Po3 | PO4 | POS | POG | PO7 | POS | POS | PO10 PO11 | PO12 Pio P§0
BCS3 | K-
04 level
Ccol | K3 1 3 3 3 = 1 3 i i i E 1 3 1
CcO2 | K3 1 3 3 3 . 1 . . . - - 1 3 1
Cco3 | K3 1 3 3 3 E 1 =) . = 2 1 3 1
Co4 | K3 1 3 3 3 - 1 s) . - 2 1 3 1
05 | K3 1 3 3 3 . 1 - - - - - 1 2 1
/)
/
f}éu,d\""’ ' \/p~2 /<. o= -
ourse In charge ! HOD;S]L/ IQAC Coordinator Principal
HOD
Department of Computer Science Engineering Dr.K RAMA NARASIMHA
K.S School of Engineering & Managemein Principal/Director

Bangalore-560109

I e)

K $ Sohool of Engineering and Managarr.
Bengaluru - 560 109

82

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (ODD SEMESTER)

FIRST ASSIGNMENT
Degree : B.E Semester : IITA&B
Branch : CSE Course Code : BCS304
Course Title : Data Structures and Applications Max Marks : 25
Date ¢ 14/12/2023 Submission Date : 22/12/2023
co
Q . K- .
No. Questions Marks Level | Mapping
[a) Define Data structures. Give its classification and explain in brief. What are
the basic operations that can be performed on Data structure?
b) Explain the dynamic memory allocation functions in detail with example.
Differentiate between malloc() and calloc() functions.
¢) Define linear array? Develop a C program for the following array operations
i) Inserting an element at the given valid position Applying
1 |.. i . . . 5 CO1
ii) Deleting an element at a given valid position K3
iii) Display of array elements
iv) Exit
Support the program with functions for each of the above operations.
d) Define pointers? How to declare and initialize pointer? Justify how pointers
can be dangerous.
a) Develop the algorit_hm of first Pattern matching Algorithm and Knuth
Morris Pratt Pattern Matching Algorithm and Apply both on the following data
T=abcaabaaabcaaabbc
Pl=aaabb and P2=aaa
) b) Define Stack. Discuss how to represent stack using dynamic arrays. 5 Ap i)(lg'ing CO1
Develop a ¢ program to demonstrate various stack operations, including cases
for overflow and underflow of STACK.
¢) Develop an algorithm for Evaluation of Postfix expression and evaluate the '
following expressions
f)2375227%+126/- i)1243-21434+

d) Develop an algorithm to convert from Infix to Postfix expression. Apply the

same for the following expressions

i) AHB*C-(D/EAF)*G)*H i) a/b-c+d*e+a*c

. a) Define two ways to represent polynomial in C and show the structural
representation for the given 2 polynomials, A(x)=4x"*+3x*+5 and

B(x)=2x"""+10. Develop a C function to add 2 polynomials.
b) Explain ADT of the polynomial.
¢) . Explain ADT of sparse matrix.

d) Develop a C function for Fast transpose of Sparse Matrix. Identify the

triplet form of Sparse matrix and find the transpose of the given Matrix

Applying
i § - \ 5 K3 CO1
100 025 0 0 10 0 20 o
0 23 0 0 45 |30 0 0 0 40
a)l 00 0 0 32 b) | 0 SO0 0 0 o
42 0 0 31 0 0 0 60 0 O
X J
L0 0320 0 o
a) Define queue. Explain the operations performed on queue. Discuss]
dequeue.
Applying
b) Discuss the disadvantage of the ordinary queue and how it is solved using a 2 S Co2
circular queue? Develop insertion and deletion functions for circular queue.
a) Define priority queue. Explain in detail One-Way list representation of a
Priority Queue with an example.
Applying
] K3 CO2

b) Explain with a suitable example of how you would implement a circular

queue using a dynamically allocated array.

ol o A2
Course In charge ¢ HO
HOD

n'mecfi“g
o nf Computst 2) -_J.;,ment

gl ool
Depaftrﬂr e o -‘a ’_/_’,J

Sicyic . reTTE -
V_S ol -_,uh‘;)‘“u__ew:f“ - —

b =

(-?‘o"‘"" En

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (ODD SEMESTER)

SECOND ASSIGNMENT
Degree : B.E Semester : IITA&B
Branch : CSE Course Code : BCS304
Course Title ¢ Data Structures and Applications Max Marks : 25
Date t o 22/01/2024 Last Date ¢ 27/01/2024

for submission

co

Q . K- :
No. Questions Marks Level mapping

a) Define Recursion
Evaluate A(1,3) using Ackerman’s function.
Develop a C function for Tower of Hanoi.

b) Define linked list. Illustrate the representation of linked lists in
memory.
1 5 Applying | i)

K3
¢) Differentiate between array and Linked List.

d) Write a note on a header linked list

e) Explain linked stack and queue,

a) Construct the node structure to create a linked of integers and write C
functions to perform the following:

i. Create a three-node list with data 10,20 and 30.

ii. Insert a node with data value 15 in between the nodes having
data values 10 and 20.

iii. Delete the node which is followed by a node whose data value is
20.

iv. Display the resulting singly linked list.
Applying
2 5 K3 CO2
b) Develop a function for addition of two polynomials using linked List
and Consider the given 2 polynomials, a= 3x* + 2x+1 and b=5x-x+2.

Represent the polynomials using Linked list.

c) Define a linked list? Explain the different types of linked lists with a

diagram,

d) Develop C program to implement the insert and delete operation of

stack and queue using a single linked list.

a) Develop the following functions for singly linked list(chains):
i, Reverse/Invert the list
ii. Concatenate two lists.
iii. Search an element in the list

b) Explain the advantage of Doubly linked list over Singly Linked list.
Develop a C function for the following operations on DLL

i. Insertat front
ii. Insertatlast,
iii. Delete at front
3 ijv. Delete at end
v. Display and count number of nodes

¢) Developa C function for the following operations on circular linked
list

i. Insert at front
ii. Insertatrear
iii. Finding the length of a circular list

d) Describe Doubly linked list with advantages and disadvantages.
Develop a C function to delete a node from a Circular Doubly linked list
with the header node.

a) Explain the concept of sparse matrix using Linked list. Write a node
structure for linked representation and apply it for the following matrix

]0 0 3 0 4’!
lo 0 5 7 0!
lo a6 0 0
lo 2 6 0 0]

b) Define the following and illustrate with suitable examples
i) Binary tree ii) Full binary tree iii) Almost complete binary tree iv)

Strict binary tree v) Skewed binary tree

¢) Define Tree. Represent the below given tree using
i Linked list representation with parenthetical notation
ii. Left-child right-sibling representation

o

P

a) Describe the Array and Linked representation of binary tree with
suitable examples.

| b) Define Binary tree with an example, Develop a C recursive routine to

Applying
K3

Applying
K3

Applying
K3

cO3

CO3

traverse the given tree using in-order, pre-order, post-order and level
order

(0}
(X

¢) Explain Threaded binary tree and their representation with neat
diagram and also develop a C function to do the inorder traversal of a

threaded binary tree.

> A e =
Course nch%%): OB/

Department of Computer Science Enginaoring
ETS School of Engingering L Fanoygeinei
. Bangalere-560189 -

-

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

R SESSION: 2023-2024 (ODD SEMESTER)
I SESSIONAL TEST QUESTION PAPER
SET-A
(esv | [[[[[[[][]
Degree B.E Semester : III
Branch CSE Course Code : BCS304
Course Title *Data Structures and Applications Date : 05/01/2024
Duration 90 Minutes Max Marks : 25
% Note: Answer ONE full question from each part.
Q Question Marks g maf)i))ing
No. Level
PART-A
: Define Data structures. Explain its classifications. List the 5 Understanding col
@) basic operations can be performed on data structure. K2)
Convert the given infix expression, ((a/(b-c+d))*(e-a)*c) to Applying
(b) | postfix expression. Evaluate the obtained postfix expression 5 K3) CO1
. “for the given data a=6, b=3, c=1, d=2, e=4.
Define the 2 ways to represent polynomial in C and Show Applying
the structural representation for the given two polynomials,
. Co1
© A(x)=4x"*+3x*+5 and B(x)=2x'°°+10. Develop a function to E (K3) O
add two polynomials.
OR
- . : Understanding
2(a) | Ditferentiate between malloc() and calloc() functions. 5 (K2) CO1
Develop an algorithm/function for Knuth-Morris-Pratt Ap‘ply'ing
Pattern Matching Algorithm and apply on the following data K3)
() T=abcaabaaabcaaabbc $ cot
Pl=aaabb
Develop a function for Fast transpose of Sparse Matrix. Applying
Identify the triplet form of Sparse matrix and identify the (K3)
transpose of the given Matrix
col0 coll col2 <col3 cold4 col5
rowo [1%) 0 22 0 15|
(C) roiw 1 4] 11 3 0 (4] (1] 5 co1
1row 2 a [¢) o] -6 0 0
row 3 o ()] 0 &) 0 0
row 4 91 [0 o 1]
1row S 0 0 28 0o 0 0

PART-B

3(a) Define queue. Explain the operations performed on queue. 5 ‘ Unde(l'ISél)nding CcO2
b) Define priority queue. Demonstrate in detail One-Way list s Applying coz

(representation of a Priority Queue with an example. (K3)

OR

4(a) | Explain circular queue using dynamically allocated arrays 5 Unde(rls;;)ndmg CO2
b) Discuss the disadvantage of the ordinary queue. z Applying coz

(Demonstrate implementation of circular queue using arrays. (K3)

== . f\{{ 15 .S~ 'j""“;,
L)
Course Incharge v ,{-I({ IQAC- Coordinator Principal <&——
oD
Department of Computer Science Engineering or. K. ANARASIMHA

K.§ School of Engineering & Management i

el -D2Ngalore-360109 Principal/Director

) - X § School of Engineering and Managemen'
Bengaluru - 560 108

W @ J K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
e DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)
II SESSIONAL TEST QUESTION PAPER

SET-B
sy o f L T T]
Degree : B.E Semester : IIIA & B
Branch : CSE Course Code : BCS304
Course Title ¢ Data Structures and Applications Date : 10/02/202%
Duration ¢ 90 Minutes Max Marks : 25

Note: Answer ONE full question from each part.

[| CO
Q ti Marks K- mapping
No. WJucgtion Level PP
PART-A
Define linked list. Classify the differences between array Applying
I(a) | and Linked List. 5 CcO2
(K3)
Develop a C function for addition of two polynomials using Applying
linked List and Consider the given 2 polynomials, K3
(b) 5 &, co2
a=5x*+6x*+2x’ and b=8x‘+3x’+4x+5. Represent the
polynomials using Linked list.

OR
5 Evaluate A(1.2) using Ackerman's function and also : Applying Coz
(a) develop a C recursive function for the same. (K3)
) Explain linked stack and queue. Develop C function to : Applying o2
perform operations on linked stack. (K3)
PART-B
Develop the following functions for singly linked
list(chains): Applying
@ | R) /Invert the list > i
1 everse/Invel e' is (K2)
ii. Concatenate two lists.
Define Tree. Represent the below given tree using Applying
i Linke.:d list representation with parenthetical (K3)
notation
ii. Left-child right-sibling representation
(b) 5 Co3

Explain the advantage of Doubly linked list over Singly

Linked list. Develop a C function for the following

operations on DLL
© i. Insertat front

ii. Delete at end
iii. Display and count number of nodes
OR
| Explain the concept of sparse matrix using Linked list. Give]
a node structure for linked representation and apply it for
the following matrix
Applying
4(a)] CO3
(K3)

Define Binary tree with an example. Develop a C recursive

routine to traverse the given tree using in-order, pre-order,

post-order and level order

Applying
(b) 5 Cco3
(X3)

Explain insertion in to a Threaded binary tree with neat Applying
(¢) | diagram and also develop a C function to do the inorder (K3)

traversal of a threaded binary tree.

S

) g Wiyl
Bl s

Course Incharge

Department of Computer Science Engineeting
K.5 School of Engineering & Management
Bangalore-560102

o

ot b PSR .

[~ oo ’}
| S

"IQAC- Coordinator] Principal

Dr. K. RAMA NARASIMHA
Principal/Director
K S Schoo! of Engineering and Managei
Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SESSION: 2023-2024 (ODD SEMESTER)
II SESSIONAL TEST QUESTION PAPER

SET-B
lus | [T T T T T [TT7]
Degree : B.E Semester : IIIA&B
Branch : CSE Course Code : BCS304)
Course Title i Data Structures and Applications Date : 10/02/2024
Duration ¢ 90 Minutes Max Marks : 25

Note: Answer ONE full question from each part.

CO
Q Question Marks i mapping
No. Level
PART-A
Define linked list. Classify the differences between array Applying
1(a) | and Linked List. 5 coz
(K3)
Develop a C function for addition of two polynomials using Applying
linked List and Consider the given 2 polynomials, K3
(b) 5 (K3) CO2
a=5x*+6x*42x° and b=8x’+3x’+4x+5. Represent the
polynomials using Linked list.
OR
2(a) Evaluate A(1.2) using Ackerman's function and also 5 Applying o2
a) .
develop a C recursive function for the same. (K3)
" Explain linked stack and queue. Develop C function to r Applying Co2
(b) perform operations on linked stack. (K3)
PART-B
Develop the following functions for singly linked
list(chains): Applying
3(@) i(Re) erse/Invert the list X i
verse/in ' 1S (Kz)
ii. Concatenate two lists.
Define Tree. Represent the below given tree using Applying
i Link(?,d list representation with parenthetical (K3)
notation
ii. Left-child right-sibling representation
(b) 5 CO3

Explain the advantage of Doubly linked list over Singly
Linked list. Develop a C function for the following
operations on DLL
©) i. Insertat front
ii. Delete at end
iii, Display and count number of nodes
OR
Explain the concept of sparse matrix using Linked list. Give
a node structure for linked representation and apply it for
the following matrix
———
BERER :
4 !r*—o | T | 5 SR CO3
(a) o |1 |0 |0
5 o |9 10
| i |
s o |0 |6
| e _,J
B Define Binary tree with an example. Develop a C recursive
routine to traverse the given tree using in-order, pre-order,
post-order and level order
Applying
(b) 5 CO3
(K3)
Explain insertion in to a Threaded binary tree with neat Applying
(¢) |diagram and also develop a C function to do the inorder CcO3
. (K3)
L traversal of a threaded binary tree.

—

N

Course Incharge Iﬁf JQAC- Coordinator “ Principal

Department o Computer Science Enginearing _ ol
K S School of Engineeri % Management Dr. K-Pf:;\MAJ\JARAbiMHA
Bangalore-560109 K cipa Plrector
. v S School of Engineering and Manage
Bengaluru - 560 109

B

o K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

DEPARTMENT OF COMPUTER SCIENCE & EN GINEERING

REED SESSION: 2023-2024 (ODD SEMESTER)
11 SESSIONAL TEST QUESTION PAPER
SET-B
lesh [T T T T T T T 171
Degree B.E Semester : [III
Branch CSE Course Code : BCS304
Course Title Data Structures and Applications Date : 6/3/2024
Duration 90 Minutes Max Marks ; 25
Note: Answer ONE full question from each part.
Q . K- e
No. Question Marks Level mapping
PART-A
@ Define Binary Search Tree, Develop a C function to X Applying o
perform searching in a Binary search Tree. K3
Explain Selection Tree. Construct Winner Tree and Applying
®) | Loser Tree for the following 16, 9, 20, 6,50,11,90,18 | > L CO4
Develop a C function for Weighting rule for Union(i,j) Applying
© illustrate with suitable example, > = e
OR
For the given graph show the adjacency matrix and
adjacency list representation
2 Applying
<4
Develop a C routine to print the reachable nodes of a Applying
(b) | graph from the source node using Breadth First Scarch 5 o C0O4
and also illustrate with a suitable graph.
Illustrate with suitable example Applying
(c) | a) Graph b) Connected components 5 K3 CO4
¢) Spanning Tree d) Biconnected components
PART-B
Define collision. List different overflow handling
. o . Applying COs5
3(2) | techniques? Demonstrate chaining with an example. 5 K3
Define Hashing. Illustrate different Hash functions Applying
I (b) | with a suitable example for each. 5 K3 COos

OR
Explain motivation for dynamic hashing. Iustrate

4(a) | dynamic hashing using directories and directoryless 5 Api’g’i"g CO5

dynamic hashing,

Develop a search function for linear probing. Apply
- division method and solve collision (if any) by using s Applying COs
linear probing. Given key elements are: 72, 27, 36, 24, K3

63, 81, 92, 101 size of the hash table is 10.

xﬁ, li lf‘l lr‘ f\"f/)’ /< ona r&
ourse In-charge =

g IQAC- Coordinator Principal —
I"Pmﬂmgnt of Compiter Science Engineering Dr. K. RAMA NARASIMHA
~al of Engineering & Management Principal/Director
sangalore-560109 K 8 School of Engineering and Manager

Rengaiuru - 560 109

USN

\ Qv |2

BCS304

Third Semester B.E./B.Tech. Degree Exammatmh Dec.2023/Jan.2024

Data Structures and Appllcatlons

Time: 3 hrs. & @'??- Max. Marks: 100
Note: 1. Answer any FIVE full questions, choos‘mg @NE Sull question from each module.
2. M : Marks, L: Bloom s level , C: Course outcomes. (4
h" -
Moduléw 1, A= M|L| C
Q.1 | a. | Define Data Structures. Explain with neat block schematic different type of |10 | L2 | CO1
data structures with examples. What are the primitive operahons that can be
performed? { ./
A WY =
b. | Differentiate between structuj'eé“:'faffd unions shown examples"fﬁr both. S |L1)|CO1
c. | What do you mean b)g patte'fn matching? Outline/ knuth, Morris, Prait | 5§ | L2 | CO1
pattern matching algoqtlun» s { %/
\-e y OR X
Q.2 | a. | Define stack. Giyg'the implementation of Push (), POP () and dlsplay ()| 7 |L2|CO1
functions by considerln g its empty and mll qondmons
b. | Write an algorlthm to evaluate a postfix expressmn and apply the same for | 7 | L3 | CO1
the gwenpostf X expression 6, 2, /, 3, -4, o ¥
c. | Write the?Postfix form of the followmg using stack : 6 | L3 |CO1
“H A¥B*C+D*E) +F 4 e (i) (a+ (b*c)A(d
Mbdule 2 P
Q.3 | 2. | What are the disadvantages of or:h...:r, qu.«uc’ Jiz.\.sm.: the impleme: m.un § |12 | {02
of circular queue. A "-::~ / D
b. | Write a note on multlp[e stacks and prlonty queue 6 | L2 | CO2
c. | Define Queue. laiscu ss how to represent queue using dynamw a;:rays L2 | CO2
)r.l c_.e:'_.- OR_H f‘_{.
Q4 |a.| Whatisa lmked list? Explam they dlfferent types of linked hsts with neat | 4 | L2 | CO2
dlagrar}LA & h
b. Gwe th“e structure deﬁmtlou fon smgly linked list (SLL) Write a C function | 8 | L3 | CO2
tO &
(1) Insert on element at the end of SLL,
(4 (i) Delete a node at the begummg of SLL
Hc.k “Write a C- ﬁ,mctlrm 10 add two polynomlals show the linked list| 8 | L3 | CO2
¥ representatlon of. below two polynomlals
p(x)=3x' +2x +1
q(x)= 8x” 3x‘° +10x° _
Module -3
Q.5 | a. | Write a C-function for thc" Jfollowing operations on Doubly Linked List | 8 | L3 | CO3
(DLL): Y
1 addition of a fiode.
(1r) concatenaflon of two DLL.
b. | Write C funcuons for the following operations on circular linked list : 8 L3 | CO3
@A) Insertmg at the front of a list.

(i1) Fmdmg the length of a circular list.
™ 1of2

BCS304

[For the given sparse matrix, give the diagrammatic linked representatlon L3 | CO3
(2 0 0 0]
4 0 0 3
A=/0 0 0 Of.
8 0 0 1
0 0 6 O] (B
OR
Q.6 Discuss how binary tree are represented usmg, P L2 | CO3
(i) Array (i) Linked hs’ﬂ R 4
Discuss inorder, preorder, postorder: and level order traversal with su1table L2 | CO3
recursive function for each. % /,.,, ¢
Define Threaded Binary Tree. ,Djscuss In Threaded binary Tree L2 | CO3
Module 4 9
Q.7 Write a function to perform the following oper atlons on thary Search Tree L3 | CO4
(BST): -
Q) Inserting an element into BST.
(ii) Recursive search of a BST.
Discuss selectlan Trees with an example. _.f‘“,_A:, L2 | CO4
Explain Transferml ng a first into a binary, h’ee with an example. L2 | CO4
A OR.
Q.8 Define gtaph Show the adjacency'malrlx and adjacency list representation L3 | CO4
ofithe graph given below (Refer Flg' Q8 (a)). Y
g 9 y
Fig. Q8 ea)
Define the followifig Terminologies w1th examples N L1 | CO4
(@) Dlgraph ~) T
(i1) Weighted graph) -
(i)~ Selfloop 1Y %
(V). Parallel edges \ N
Explam in detail elementary graph operatlons L2 | CO4
Module — 5,
Q9 |an ,'Wnat is collision? What are the methods’ tar res::)lve collision? Explain linear L2 | CO5
' += probing with an. example
Explain in detaﬂ, about static and dynam ic hashing. L2 | CO5
Discuss Leﬂlst Trees with an eXample L2 | CO5
¢ OR
Q.10 Explain different types of, HASH function with example. L2 | CO5
Discuss AVL tree wn‘.h an example Write a function for insertion into an L3 | COS
AVL Tree.
Define Red-bla¢k Tiree, Splay tree. Discuss the method to insert an element L2 | COS
into Red-Bla,clLtreE

% % % % K

2 of 2

50, will be treated as malpractice.

Important Note : 1. On completing your answeis, compulsorily draw diagonal “ross lines on the remaining wiank pages.
2. Any revealing of identification, appeal to evaluator and /or 2quations written eg, 42+8

CBESISGHENE

USN

21CS32

Kl |21 & [o]° |9

Third Semester B.E. Degree Examinaﬁ_bﬁ, Dec.2023/Jan.2024
Data Structures and Applications

Time: 3 hrs. » "Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a
b.
2 a
b.
C.
3 a.
b.
C.
4 a
b.
C.
5 a
b.
6 a
b.

. | Module-1 ¢ W/

What is data structure? Explaintin detail classification of data structures with example.
: (10 Marks)
Write an algorithm for inserting and deleting an element at a given location in an array and
implement the same in<C” language. (10 Marks)

OR
Explain the nested structures with an example‘ofa ‘C’ program. (07 Marks)
What are self-referential structures? (03 Marks)
Explain ‘€’ library functions for memory allocation/deallocation functions with example.
' (10 Marks)
Module-2 -

What is stack? Explain basic operations of stack with algorithm. (05 Marks)
Write ‘C’ program to implement stack using array. (05 Marks)

Write an algorithm to convert an infix notation to post fix notaiion to post fix notation and
apply the algorithm forthe following infix expression to convert it iinto post fix.

A—-(B/C+(D%E=*E)/G)*H. (10 Marks)
OR
What is queue? Explain basic operations of queue with algorithm. (06 Marks)
Write ‘C’.program to implement, linear queue using array. (07 Marks)
Explain different types of queues with example. - (07 Marks)
Module-3"

What are linked lists? Explain with algorithm inserting a new node in a linked list for the
following cases:

Case 1 : The new node is inserted at the:beginning.

Case 2 : The new node after a given node. (10 Marks)
What are circular linked lists? Explain with algorithm deleting a node from a circular linked
list for the following cases:

Case | : The first node

Case 2 : The last node. | (10 Marks)
OR

Represent polynomial using linked list and explain addition of two polynomial with

algorithm. (10 Marks)

Write a ‘C’ program to implement stack using linked list. (10 Marks)

1of2

10

oPp

IS

IS

b

Module-4 Fay
What are binary trees? Explain the linked representation ofbinary tree.
What is binary search tree? Construct the binary tree for the following expression:
exp =((a+b)—(c*d)%(e Af)/(g-h)). 9’
Write applications of trees.

OR ;
Explain pre-order and in-order traversal with example and also write algorithm.
Explain inserting and deleting a new node‘in a binary search tree with-algorithm.

= Module-5
What are AVL trees? Explain operations on AVL trees with éxample.
What are red-black trees? Explain operations on red-black tfe€s with example.

Oy OR :
Explain the graph representation using adjacency fatrix.
Explain the two standard graph traversal algorithms-in detail with example.
Explain different hash functions with example.

* 4k F

20f2

21CS32

" (08 Marks)

(07 Marks)
(05 Marks)

(10 Marks)
(10 Marks)

(10 Marks)
(10 Marks)

(05 Marks)
(10 Marks)
(05 Marks’

Save trees use e-Question Paper Go green

DOWNLOAD THIS FREE AT ' www.viuresource.com

668 SEHEE

us | "TT J
AR PETPeR e e I O I I
Third Semester B.E. Degree Examination, Jan./Feb. 2022
Data Structures and Applications
Time: 3 hrs. Max. NV 0y
. Note: Answer any FIVE full questions, choasing ONE full question fiy mo@h'.
2
= Module-1
g 1 a Whatislincar array? Discuss the representation of linear array | (06 Mirks)
4 b. Differcntiate between static and dynamic memory alloe s four dynamic
g memory allocation functions. (16 Marks)
- ¢. Write a menu driven program in C for the following arra
gnf (i) Inserting an element (ELE'M) ata _givcn ~\‘.alid posi
=z (11} Deleting an clement at a given valid position.
§ g (i“,) I?i:fpl:xy ofarray clements.
SN (v) Exit
Ed Support the program with functions for cach of g ubove ations, (08 Mirks)
25 OR '
g 2 a. Give Abstract Dita Type (ADT) for arrav Tay can be declared and ininalized?
é, z VA b (06 Maarks)
2 § b, With suitable example. discuss self- s latltiircs. (06 NMarks)
£E¥ c. Define Sparse matrix. [Tow to rg Sparse matrix? Write an algorithim/lunction o
TS5 Iranspose a given Sparse matrix., HIS Viarh
§ El 3 a. Declinc Stack. Discuss how stack using dynamic arrays. (116 Marks)
T 5 b. Write a menu driven C e following operations on STACK of intcgers:
% E (i) Push an clemen 0s
£E (ii) Pop an element the stack
S¢ (iii) Display the ck
;5 g (iv) Exit
= Show the ave srflow conditions. (06 Marks)
£ é ¢. What agiul rs of ordinary queue? Discuss the implementation of circular queus
sl using arr (U8 Marks)
g
23
& i
£ OR
g = 4 a. W irsion? Write recursive function (o solve Towers of Hanoi problem. (06 Marks)
@< b. Discllss lawing:
-] - -
. (1) Double Ended Queue
2 (i) Prionty Queuc (06 Marka
= J1te 4 algorithm to convert infix expression to postfix expression. Show the content ol
g k to convert the following infix expression:
5 (B+ DYE - » (G - H/K) (N8 Ntk
- lolr2

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS
A Vturesource Go Green initiative

Save trees use e-Question Paper Go green

DOWNLOAD THIS FREE AT www.viuresource.com

Module-3
§ a. Wriiea C function to concatenate two singly linked Hst.
b Give the structure definition for singly Tinked list, Write a C function to:
(1) Insertan element at the enl
(n) Delete a node at the beginning
¢ Discuss how to read a polynomial consisting of *n” terms implemented using linke

(06 Mirks)
OR 4
6 a Wt a tunction 1o delete a node whose information tiekd is specified ked hist

(06 Vlsirks)
b What is cireular doubly linked st Write o C function (o perk £ opermions

on arcular doubly linked list:

t) Insert a node at the begmnp

(i Delete a node from the ieas (08 Marrks)
¢ Discuss how to implement stacks and queues using link<dglil. (06 Matrks)

Module-4
7 a. Deline binary tree. List and discuss any two properties ol
b. Write a function to perform the following operati
(i) Deletion froma BST
(i1} Inserting an element into a 13ST
v Dcline Threaded Binary Tree. Discuss In-tl

! tree. (00 Narks)
earch Tree (BST):

(08 Narks)
iy tree. (06 Murks)

i) Arriy (i1) Linked list (06 Marks)
el order traversal with suiwebic recursive

(08 Murks)
ISIng exprossion tiee. (06 Mirks)

8 a4 Discuss how binary tree are represe
b, Discuss inorder, preorder, postond
function for cach.

¢ Write a C lunction to evaluated

odule-5

Mgt pcmli(m on Graph (G of cities:

S ing adjacency matr.x

D lfom a given starting node ina digiaph usimg BESADES
(10 Marks)
npie Wrile a funchon for mscruon into an AV tree

(10 Marks)

(11 Create a graph of™

(o Prine all the g
method

b, Discuss AVL tp

OR
10 2 Define ha re the Iwo criteria, o good hash function should satisiy 7 Discuss open
uddrissing (i chaining method with an example, (10 Marks)

ek tree, Splay a2 and B ree. Discuss the method o insert an element into
(10 M:rks)

Aok ok

“

ol

'

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS
A Viuresource Go Green initiative

Save trees use e-Question Paper Go green
DOWNLOAD THIS FREE AT www.viuresource.com

s LTI T

Third Semester B.E. Degree Examination, June/July 2023
Data Structures and Applications

Time: 3 hrs. Vs, M2

Note: Answer any FIVE full questions, choosing ONE full qaestion froneqch mm&&

Module-1|
1 a. Define data structures. Classify data structures in various features.
b. Wriw algorithms te nserl a data clement into array and delete ¢

(06 Viarks)
W Areay
(07 Nurka)

0, will be freated as malpractise,

) c. Explain various memory allocation and de-allocation function H s (07 Marks)
= OR
i¢ 2 a. Explain user defined swructures with respect to €, Gpve Stlgture definition and declaation
;,; for STUDENT data with the following informattai 1wl Nime Also gne selr
= referential structure. S (34 Marks)
; b. Show array representation of two polynomuals.dinte a Clldoction w add o polynomials

enep, 4

J8(x) + Bix) Al 2xM ek,
g (08 Nlarky

A(x) and B(x) term by term to produce (X))
B(x)=x 110t 3712

obtain transposc ol sparse matrix.
f1s o o 22
|

gz
£Z
35 -
2o 0 11 3 0
s
Sx 0 0 0 -6
PR (18 Vlarks)
335 0 0
24
=
4 ;_; 91 0
£& o 0
g -
£.2
58 Module-2
R T . : . . .
Z= 3 a ck ng its execution. Ciive algorithm to simulage Tower of' Henot
S0 h- . i .
s 8 stal of 3 disc which are placed in source pole (6 Yiarks)
g3 RS .
=g b. Nt operations on stack. Also mcorparaie usetul routmes o check
£ . i b
S d einpty. Also include global dechvations, W7 ALarks)
o = _ e . - . N .
=5 c. vert mfix expression w prefix formi, Apply the algonthm o obtin
SN dim. Infix expression 16 *2 A2 A 39 1) (07 Viarks)
==y
Pl OR
4 2 At queue using dynamically allocated arrmys. Give steps 1o relacate clements m
dynamic array lor proper insertion and deletion (I Varks)

With the help of algorithm. evaluate the postiix expression 62233 usmy stack
{8 Markyy

at 15 the advantage cireutar queue over ordinary queuc? Give AT 10 pertorm yvanous
ations on circuiar queuce. Also give ADTs 1o cheek For eapty and fuli. 0% Narks)

lmportunt Noge :

o) ~
Lolrl

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS
A Vturesource Go Green initiative

Save trees use e-Question Paper Go green

DOWNLOAD THIS FREE AT www.vturesource.com

21832

Module-3 .
G structure repeesentation in C o ereate o stingle Imked list. Give C routine 1o implene
foflowing operations on SLL:
() Create SLE ol integer data
G inserta node af rear end
iy Dedete a noda trom front end
tiv) - Display alf nodes neatly
(i Search fora suitble data in SILL and display approprigfe message.
b What is the advartage of doubly linked list? Give suitable steps o insen
A and B teonsider A is NULL, B is NULL and A & B are nol NULLYin SLL.

el

OR

6 & Wate the node wpresentation of the linked representation o
alzorrlun o pertcm addition on two polynomials.,

b Diitereniane between SLL. DLL. aircular hinked list and hes

Leomn=ertanade cireular linked histand traverse the list.

al Atso give
(L Varky)
Gave algorithim

(H0) Marks)

Module-4
I3 O tree. For the given tree, explum weminologes 4
Cd o Degree (111 Non terminal
Ca anceeslor (V) [evel

~J

(06 Marksy
2.0,=90. 3.3, 10,0, 8, 13, Give 3 traversals ol

(U7 Marks)
and post order sequence JHINDEBIFGCA. construct
(07 DMarks)

b Cive € rouline 0 create BST
RS1 constiacted from above da
¢ Uives mourder sequence REEBL

bmarny tree and give pre W

8 o Givearray and I list rCrevs

&
\9 il = &

OR

K
[4 =)
¢ &
Fre Q8 (06 Marks)
o Wote ilenitive and recursive scarch function to search a key in BST, (08 Marks)
Drggpa binury tree for the following expression 3+ 4 = (7 6). 4+ 3, Traverse the tree and
r‘& pre-order and post order expression. (06 Marks)

2013

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS

A Vturesource Go Green initiative

Save trees use e-Question Paper - Go green

DOWNLOAD THIS FREE AT www.vturesource.com

Module-5
9 a. Forthe given graph show adjaceney matrix and adjacency hst representa ivn

L 4

I12.Q9%) (e Vbarksy
Write BSF and DFS aigorithm for graph traversal. (1 Mk
¢ Write a nots on AVL trec. 1 (k2 \arhad

OR

10 a. What is hashing? Explain different hashing funcoon sutfibic numerca? cxample
(O8N arka
v ith suitable algzorthm al ime
blefsie 101 (05 KTarhs)
(e Alarks)

b, What is collision? Explain the method o et
probing. Insert-keys 72027, 30024 6308 Ll
<. Write a note on B-tree.

<
O
N

s

3o0l3

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS
A Vturesource Go Green initiative

Save trees use e-Question Paper Go green

DOWNLOAD THIS FREE AT www.viuresource.com

EBCSISCHEN

USN E
Third Semester B.E. Degree Examination, July/August 2022

Data Structures and Applications
Time: 3 hrs, Ma:
Note: Answer any FIVE Jull questions, choosing ONE Jull question from each

Module-1
5 I a Define data structures, Explain the classilication of data structures with examples. (06 Marks)
g b. Explain the dynamic memory allocation functions supported byvslal with @'max and
= examples. & " (06 Marks)
;,E ¢ Consider the patiern P = ababab, Construct the table and the corres| libeled directed
K graph used in the fast or second pattern matching algorithm. Trae€ it fal the input texy
'E' T = abaabababba, g Sl (08 Marks)
62 OR i
£= 2 a. Differentiate between structures and unions Show exdn . ; (06 NMarks)
E é b. Explain any four string handling functions supported by thiggsitax and exmn]z(llisi.lm.ks)
é": ¢ Explain the representation of linear arrays m n 30, consider the lincar arrays
g AAA (5:50) and BBB(-5:10).
25 i) Find the number ofclements in cach arre
= é i) Suppose Base (AAA) = 300. Base (BB id 4 words per metnory cell for
S AAA, 2 words per memory-cell forBBR ‘address of AAA[TS]. AAAJSS].
= BBB[8] and BBB|0O]. (08 Marky)
£3 Mo di
S 3 a Define a stack. Explain the differen 57 thal can be performed on stacks with
S suitable “C” functions and examplgd® - (07 Marks)
Sz b. Convert the following infix expred istlix expression using stack.
EBE A+(B+C—-(D/E F)» Gy« 11 . (05 Marks)
> £ ¢ Develop a C recursive progEfipior &F¢r of [lunoi problem. Trace it for 3 disks with
52 schematic call trec diagrangl (D8 Marks)
EE : OR
£l 4 a. Develop C funclions mplgmentHnsertion, deletion and display operations of a circular
42 qucue. ' (07 Marks)
AL b Write an algorithpato ¢ ale a postfix expression. Trace the algorithm for the following
S E expression showingig stacklcontents 6 51 4 +23 ¢+ (06 Murks)
53 ¢ Define Ackerpi) recursively and evaluate A>3, 0). Also, develop C code for the
E’ g'i . (07 NMurks)
ES : Module-3
g E 2 between arrays and linked lists. (04 Marks)
82 b. to implement the following in a singly linked list:
~ o i) 4 node from the front i) Concatenate two linked lists. (08 Marks)
2 c. De nction to add two polynomials using singly linked list. (08 Murks)
: OR
£ 6 how the diagrammatic linked representation for the following sparse matrix:
B

0 (04 Marks)
0
| of 2

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS
A Vturesource Go Green initiative

Save trees use e-Question Paper Go green
DOWNLOAD THIS FREEAT ~ www.vturesource.com

1

~1

14 a

0.

IBCS32
Develop C lunctions to implement the following in o doubly linked list;
i) Insert 4 node at the ront
1y Delete a node from the end. ' 0¥ Ny
Develop C functions 10 implement the various operations of queues using linked list,
(0% A

Meodule-4
With suitable examples. define the following:
1} Degree of a node
u) Levelofa binary vee
) Complete binary tree
iv) Full binary tiee. I Varkss
Construct binary search tree for the given set of values 14, 15, 4, 9 18, 3, 8. 10, 20
Also, perform inorder, preorder and postorder traversals of the obtain@el (roe ﬂrx Murks)
Lixplam threaded binary trees and their representation with a neat B0, develop a
C function to do the inorder traversal of a threaded binary tree, (08 Nlarks)

OR
Explain the array and inked representation of binary trees wit
A binary tree has 9 nodes. The inorder and preorder trav
ol nodes,
horde EACKFHDBG
Preorde: FARKCDIIGB
Draw the binary tree, Also, perform the post order travd
Develop C functions o implement the tollowin
1) Scarch a key value in a binary scareh tree
i) Copying a binary tree EE S

xamples. (06 Marks)
following sequences

¢ oblained tree. (06 Murks)

108 Marks;

Modi
Deline a graph. For the graph shown'@
adjacency list representations

FHY(a), show the adjacency matix ang
(0O Nlur s

Fig.Q.9(a)
\ M”‘w%)
R
. sl .
Suppose an array contiin: s as follows: 77, 33, 44, 11, 88, 22, 66. 33 S0t
array using insertion gorithm. (U6 Mlurks)

What is hashing? : [ollowing hash {unctions with proper examplos:
i) Division i) iii) Folding. (08 Marks;
OR

Briefly drst Search (BIFS) and Depth-First Search (NDFS) mraversal o
graph. A S and DES traversals Tor the Tollowing graph in Fig. Q) [0ia
@)
Ol \J\P'*__‘!
LA L) NG o
18.Q. 10(1) U:l D) {:r.'f _',-E.{*-:
Nt

[EU PR STYNSY
mnw cards are punched as follows 348 143, 361, 423 538, 128 321 543 4n A
X sorl Lo sort them m 3 phases F06 Mk
15 Colbson? Explain the collision tesolution teehmigues with proper eaainntes
NN
¥ ok W s

2o0f2

BRANCHES | ALL SEMESTERS | NOTES | QUESTON PAPERS | LAB MANUALS

A Vturesource Go Green initiative

Data structures and Applications BCS304

MODULE-1
INTRODUCTION

TOPICS:

1.

Module 1: Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic

Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays.

Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays,

Polynomials and Sparse Matrices.
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.

INTRODUCTION

Basic Terminology of Data Organization:

¢ Data: The term ‘DATA’ simply refers to a value or a set of values. These values may present

anything about something, like it may be roll no of a student, marks, name of an employee,

address of person etc.
e Data item: A data item refers to a single unit of value.
v" For eg. roll no of a student, marks, name of an employee, address of person
etc. are data items.
v" Data items that can be divided into sub items are called group items (Eg.

Address, date, name),

v" Data items which cannot be divided in to sub items are called elementary items

(Eg. Roll no, marks, city, pin code etc.).
¢ Entity - with similar attributes (e.g all employees of an organization) form an entity set.
¢ Information: Data with given attribute or processed data.
e Field is asingle elementary unit of information representing an attribute of an entity.
e Record is the collection of field values of a given entity.

o Fileisthe collection of records of the entities in a given entity set.

e Each record in a file may contain many field items but the value in a certain field may uniquely
determine the record in the file. Such a field K is called a primary key, and the values Ki, K2,

K3... in such a field are called keys or key values.

¢ Records can be classified as fixed-length records or variable-length records. In fixed length

records, all the records contain the same data items with the same amount of space assigned to

each data item .In variable length records, file records may contain different lengths.

Page 1

Data structures and Applications BCS304

EXAMPLE:
Attributes: | Name | Age | Sex | Roll Number Branch
A 17 | M 109cs0132 CSE
Values:
B 18 | M 109ee1234 EEE

Here, it is an example of student details where STUDENT is the given entity. Then
name, age, sex, roll number, branch are attributes and their values are properties (A, 17, M,
109cs0132, CSE). Collection of student details is student entity set and Roll number is the primary

key which uniquely indicates each student details.

DATA STRUCTURE

“Data Structure is a way of collecting and organizing data in such a way that the operations
on these data can be performed in an effective way™.
e “Data structure can be defined as logical or mathematical model of a particular organization

of data.”

e “Data structure is a representation of logical relationship existing between individual elements
of data”. In other words, adata structure defines a way of organizing all data items that
considers not only the elements stored but also their relationship to each other. The term data

structure is used to describe the way data is stored.

e Data Structures is about rendering data elements in terms of some relationship, for better
organization and storage in computer.

To develop a program of an algorithm we should select an appropriate data structure for that

algorithm. Therefore, data structure is represented as:
Algorithm + Data structure = Program

For example, data can be player's name "Virat" and age 26. Here "Virat" is of String data type
and 26 is of integer data type. This data can be recorded as a Player record. Now, it is possible to
collect and store player’s records in a file or database as a data structure. For example: "Dhoni" 30,
"Gambhir" 31, "Sehwag" 33.

In simple language, “Data Structures are structures programmed to store ordered data, so that
various operations can be performed on it easily. It’s an arrangement of data in a computer’s memory.

Algorithms manipulate the data in these structures in order to accomplish some task .

Page 2

Data structures and Applications BCS304

11 CLASSIFICATION OF DATASTRUCTURES
The logical or mathematical model of a particular organization of data is called a Data

Structure.
Data structures can be classified as

s Primitive data structure
¢ Non-Primitive data structure

Anything that can store data can be called as a data structure, hence Integer, Float,
Boolean, Char etc, all are data structures. They are known as Primitive Data Structures and some
complex Data Structures, which are used to store large and connected data. They are called Non-
primitive DataStructures.

Examples:
e Array
¢ Stack
e Queue
e Linked List
e Tree
e Graph

All these data structures allow us to perform different operations on data. The selection of these

data structures is based on which type of operation is required.

‘ Data Structures ‘

l Primitive Data Structures Non-Primitive Data Structures
N2 v
v 17 7 7 \ v
Integerl | Float l |Cha|“ ‘Pointers| I Arrays ‘ | Lists l ‘ Files ‘
| Linear Lists ‘ ‘Non- Linear Lists‘
I Stacks Queues ‘ Graphs ‘ Trees

Figure 1: Classification of data structure

Page 3

Data structures and Applications BCS304

Figure 1 gives the complete classification of the data structure.

Definitions:

Primitive Data Structure: “A primitive data structure used to represent the standard data
types of any one of the ¢ omputer languages™. Variables, pointers, etc. are examples of primitivedata

structures. Simple data structure can be constructed with the help of primitive data structure.

Non-Primitive Data structure: “Non-Primitive data structure can be constructed with the
help of any one of the primitive data structure and it is having a specific functionality. It can be designed
by user”. Arrays, Structure, Union, linked list, Stacks, Queue, trees, graphs etc are example for non

primitive data structures.

Non primitive data structures can be further classified as

1) Linear data structure
2) Non-linear data structure

Linear Data Structures:

“Linear data structures can be constructed as a continuous arrangement of data elements in the
memory. In linear data structure the elements are stored in sequential order. In the linear Data Structures
the relationship of adjacency is maintained between the Data elements .It can be represented by using

array data type or linked list”. Each element has one successor and one predecessor.

The linear data structures are:

e Array: Array is a collection of data of same data type stored in consecutive memory location
and is referred by common name

e Stack: A stack is a Last-In-First-Out (LIFO) linear data structure in which insertion and deletion
takes place at only one end called the top of the stack.

e Queue: A Queue is a First in First-Out (FIFO) linear data structure in which insertions takes
place one end called the rear and the deletions takes place at one end called the Front.

o Linked list: Linked list is a collection of data of same data type but the data items need not be

stored in consecutive memory locations.

Page 4

Data structures and Applications BCS304

Non-Linear Data Structures:

“Non-linear data structure can be constructed as a collection of randomly distributed set of
data item joined together by using a special pointer (tag). In non-linear Data structure the relationship of
adjacency is not maintained between the Data items. Elements are stored based on the hierarchical
relationship among the data.” Each node doesn’t have exactly one predecessor and one successor. It may

contain more than 1 predecessor or successor.
The following are some of the Non-Linear data structure

e Trees: Trees are used to represent data that has some hierarchical relationship among the data
elements.(as shown in figure 2)

Personnel

Figure 2: Trees

e Graph: Graph is used to represent data that has relationship between pair of elements not
necessarily hierarchical in nature. For example electrical and communication networks, airline

routes, flow chart, graphs for planning projects.(as shown in figure 3)

—4

Figure 3: Grh
12 DATA STRUCTURE OPERATIONS
The data in the data structures are processed by certain operations. The particular data structure
chosen largely depends on the frequency of the operation that needs to be performed on the data
structure.

+ Traversing
« Searching
+ Insertion

Page 5

Data structures and Applications BCS304

+ Deletion
+ Sorting
+ Merging

(1) Traversing: Accessing each record exactly once so that certain items in the record may be
processed.
(2) Searching: Finding the location of a particular record with a given key value, or finding the
location of all records which satisfy one or more conditions.
(3) Inserting: Adding a new record to the structure.
(4) Deleting: Removing the record from the structure.
(5) Sorting: Managing the data or record in some logical order (Ascending or descending order).
(6) Merging: Combining the record in two different sorted files into a single sorted file.
Operations on linear data structures

1. Add an element

2. Delete an element

3. Traverse all the elements

4. Sort the list of elements

5. Search for a data element

Apply one or more functionality to create different types of data structures.

For example Stack, Queue, and Linked Lists.
Operations applied on non-linear data structures

The following list of operations applied on non-linear data structures.

1. Add elements.

2. Delete elements

3. Display the elements

4. Sort the list of elements

5. Search for A data element by applying one or more functionalities and different ways of joining

randomly distributed data items to create different types of data structures.
For example Tree, Graphs and Files.

13 REVIEW OF STRUCTURES, UNIONS AND POINTERS
STRUCTURE DEFINITION

“Structure is a collection of data items of same or dissimilar data type. Each data item is
identified by its name and type. (Or) A Structure is a user defined data type that can store related

information together. (Or) A structure is a collection of different data items / heterogeneous data items

Page 6

Data structures and Applications BCS304

under a single name.” The variable within a structure are of different data types and each has a name
that is used to select it from the structure.

C arrays allow you to define type of variables that can hold several data items of the same kind
but structure is another user defined data type available in C programming, which allows you to
combine data items of different kinds.

Structures are used to represent a record, Suppose, track of books are kept in a library are
recorded then it is required to track the following attributes about each book:

« Title

+ Author

+ Subject
« Book ID

STRUCTURE DECLARATION
It is declared using a keyword struct followed by the name of the structure. The members of the

structure are declared within the structure.

Example:

struct struct-name

{
data_typel member_namel,;
data_type2 member_name2;

data_typen member_namen;

}structurevariablename;

STRUCTURE INITIALIZATION
Assigning values to the data members of the structure is called initializing of structure.
Syntax:
struct struct_name
{
data _type member_namel;
data _type member_name2;

} structure variable={constant1,constant2},

Page 7

Data structures and Applications BCS304

Accessing the Members of a structure :-

A structure member variable is generally accessed using a ‘.’ dot operator.,
Syntax: structurevariable.member_name;
The dot operator is used to select a particular member of the structure. To assign value to the individual
Data members of the structure variable stud, it is written as,
stud.roll=01;
stud.name="Rahul”;
To input values for data members of the structure variable stud, can be written as,
scanf(“%d”,&stud.roll);
scanf(‘’%s” stud.name);
To print the values of structure variable stud, can be written as:
printf(“%d”,stud.roll);

printf(“%s”,stud.name);

Example for structure:

struct employee

{
char name[10];
int age;
float salary;
}person;

Here struct is a keyword.

This example creates a variable whose name is person and that has three fields

e A name that is a character array
- An integer value Age
- A float value salary

The . (Dot operator) is used as the structure member operator to select a particular member of the
structure.
Example: strepy(person.name,”james”);
person.age=20;

person.salary=40000;

Page 8

Data structures and Applications BCS304

Program to create a struct person , initializes its data member and print their values
#include<stdio.h>
#include<conio.h>
void main()
{
struct person{
char name[10];
int age;
float salary;
b
struct person p1;
clrscr();
strcpy(pl.name,"james");
pl.age=10;
pl.salary=35000;
printf("\n name=%s age=%d salary=%f",pl.name,pl.age,pl.salary);
getch();

}
ARRAY OF STRUCTUREs
An array of structure can also be declared. Each element of the array representing a structure
variable.
Example : struct employee emp[5];
The above code define an array emp of size 5 elements. Each element of array emp is of type employee

#include<stdio.h>
#include<conio.h>
struct employee

{
char ename[10];
int sal;

3

struct employee emp[5];

inti;

void ask()

{

for(i=0;i<3;i++)

{

printf("\nEnter %dst employee record\n",i+1);
printf("\nEmployee name\t");
scanf("'%s",emp[i].ename);

printf("\nEnter employee salary\t");
scanf(*%d",&empJi].sal);

}

printf(*\nDisplaying Employee record\n");
for(i=0;i<3;i++)

{

printf("\nEmployee name is %s",emp[i].ename);

Page 9

Data structures and Applications BCS304

printf("\nSlary is %d",emp[i].sal);

}

void main()

{
clrscr();
ask();
getch();

TYPE DEFINITIONS AND STRUCTURES
The structure definition associated with keyword typedef is called Type-Defined Structure.
Syntax 1: typedef struct

{
data_type member 1,
data_type member 2;
data_type member n;
}Type_name;

Where,

o typedef is the keyword used at the beginning of the definition and by using typedef user defined data
type can be obtained.

e struct is the keyword which tells structure is defined to the complier ¢ The members are declare with
their data_type

e Type_name is not a variable, it is user defined data_type.
Syntax 2: struct struct_name

{
data_type member 1,
data_type member 2;
data_type member n;
b

typedef struct struct_name Type_name;
Example: It is possible to create our own data types (user defined)by using typedef statement as below

typedef struct
{

char name[10];
int age;
} humanbeing;
Here humanbeing is the name of the type defined by structure definition and we may follow
this definition with declarations of variables such as

humanbeing personl, person2;

Page 10

Data structures and Applications BCS304

This statement declares the variable personl and person2 are of type humanbeing.

e Structures cannot be directly checked for equality or nor equality. i.e. directly using

personl==person2 is not allowed. If each individual data member is checked for equality then

the entire structure can be checked for equality.

Function to Check equity of two structures

#define FALSE 0
#define TRUE 1
int humansEqual(humanBeing personl, humanBeing person2))
{
if(strcmp(personl.name, person2.name))
return FALSE;
if((personl.age != person2.age)
return FALSE;
if((personl.salary != person2. salary)
return FALSE;

return TRUE;
¥
void main()
{ -
if(humansEqual(personl, person2))
printf(*the two human beings are the same\n™);
else
printt{*‘the two human beings are not the same™);
¥

Page 10

Data structures and Applications BCS304

Program to check equality to structure variables.

¥

#include<stdio.h>
#include<conio.h>
#define FALSE 0
#define TRUE 1
typedef struct
{
char name[10];
int age;
float salary;
}humanbeing;
int humansEqual(humanbeing p1,humanbeing p2)
{
if(strcmp(pl.name,p2.name))
return FALSE;
if(pl.age!=p2.age)
return FALSE;
if(pl.salary!=p2.salary)
return FALSE;
else
return TRUE;
}
void main()
{
humanbeing p1,p2;
clrscr();
pl.age=12
;pl.salary=12000;
strcpy(p2.name,”hi™);
p2.age=12;
p2.salary=12000;
if(humansEqual(pl,p2))
printf("\n persons are same ");
else
printf(*\n persons are not same");
getch();

POINTERS TO STRUCTURES

Pointer to a structure is a variable that holds the address of a structure. The syntax to declare

pointer to a structure can be given as:

strcut struct_name *ptr;

eg: struct stud *ptr_stud;

To assign address of stud to the pointer using address operator(&) we would write ptr_stud=&stud; To

access the members of the structure (->) operator is used.

for example ptr_stud->name=Raj;

Page 1

Data structures and Applications BCS304

Example program (pass the address of structure as an argument)
#include<stdio.h>
Struct point
{
int X;
inty;
2
void print(struct point *ptr)
{
Printf(*“%d%d\n”, ptr->X, ptr->y);
}
int main()
{
Struct point p1 = {23, 45};
Struct point p1 = {23, 45};
print(&pl);
print(&p2);
return 0;
}
Output: 2345
56 90

NESTED STRUCTURES

It is possible to embed a structure within a structure. “The structure that contains another
structure variable as its members is called a nested structure or a structure within a structure is
called nested structure.”

¢ The structure should be declared separately and then be grouped into high level structure. The
data members of the nested structures can be accessed using (.) Dot operator.

¢ Syntax to follow while accessing the data members of inner structure in nested structure with dot
operator is

outer most structure variable. inner most structure variable. inner data member;

¢ Syntax to followed while accessing the data members of outer structure in nested structure with
dot operator is

outer most structure variable .outer data member ;

Page 1

Data structures and Applications BCS304

Typel: declaring structure within a structure
Example :

struct student
{
char name[20];
int marks;
float per;
struct dob
{
int day,month,year;
}date;
¥s,
void main()
{
printf(“\n enter the student details-name marks percentage and date of birth™):
scanf (“%s%d%%%d%d%d”.s1.name.&s1.marks.&s1.per.&s1.date.day,&s1.date.month,
&s1.date.year);
printf(*‘the given student details is as follows™):
printf(*\n name =%s marks=%d percentage=%d dob=2%d/%d/%d”, s1.name. sl.marks.s1.per,
sl.date.day,s1.date.month,s1. date.year);
getch();

ks

Type 2: declaring a structure variable of one within another structure
Example :
struct dob

{

int day,month,year;

I

struct student

{
char name[20];
int marks;
float per;
struct dob date;

¥s3;

void main()

{

Page 1

Data structures and Applications BCS304

printf(“\n enter the student details-name marks percentage and date of birth™);
scant (“%s%d%1%d%d%d”.s1.name.&s1.marks,&sl.per.&sl.date.day.&s1. date.month,
&s1.date.year);
printf(*the given student details is as follows™);
printf(*\n name =%s marks=%d percentage=%d dob=%d/%d/%d", s1.name. sl.marks.sl.per,
s1.date.day,sl.date.month,s1.date.year);

getch();
}
Nested structures with typedef
Example :
typedef struct
{
int month;
int day;
int year;
}date;
typedef struct
{
char name[10];
int age;
salary;
date dob;

}humanbeing;
humanbeing personl,person2;
If humanbeing personl and person2 declares personl and person2 variables of type humanbeing.
Then consider a person born on feb 11, 1944, can have the values for the date struct set as:
personl.dob.month=2;
personl.dob.day=11;
personl.dob.year=1944;
Similarly for considering person2, his dob is 3" December 1956 then

person2.dob.month=12;

person2.dob.day=3;
person2.dob.year=1956;

Page 1

Data structures and Applications BCS304

Program for illustration of nested structures with typedef
#include<stdio.h>
#include<conio.h>
void main()

{
typedef struct

{
int month;
int day;
int year,;

}date;

typedef struct

{
char name[10];

intage;

salary;

date dob;
}humanbeing;
humanbeing personl;
strcpy(personl.name,"james");
personl.age=10;
personl.salary=35000;
Personl.dob.month=2;
Personl.dob.day=11,;
Personl.dob.year=1944;
printf(*\n details of the person™);

printf(*\n name=%s age=%d salary=%f dob=%d-%d-%d",personl.name,
personl.age,personl.salary,Personl.dob.day,Personl.dob.month,Personl.dob.year);
getch();
}
UNIONS

Union is a collection of variables of different data types. Union information can only be stored in
one field at any one time.

Definition: “A union is a special data type available in C that enables you to store different
data types in the same memory location. «

union can define many members, but only one member can contain a value at any given time.
Unions provide an efficient way of using the same memory location for multi-purpose.

Declaring Union:
union union-name

{

data_typel member_namel;

Page 1

Data structures and Applications BCS304

data_type2 member_name2;

data_typen member_namen;

}union variablename;

Example:
union data

{

chara;

int x;

float f;
}mydata;

The union tag is optional and each member definition is a normal variable definition, such as int
i; or float f; or any other valid variable definition.

At the end of the union's definition, before the final semicolon, you can specify one or more
union variables but it is optional. The memory occupied by a union will be large enough to hold the
largest member of the union. For example, in above example Data type will occupy 4 bytes of memory

space because this is the maximum space which can be occupied by float data.

Accessing a Member of a Union
#include <stdio.h>
#include <string.h>

union Data

{
inti;
float f;
char str[20];

)2

int main()

{
union Data data;
data.i = 10;
data.f = 220.5;

strcpy(data.str, "C Programming"™);

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str); return 0;

Page 1

Data structures and Applications BCS304

Dot operator can be used to access a member of the union. The member access operator is coded

as a period between the union variable name and the union member that we wish to access.

Program to illustrate union with in a structure.
#include<stdio.h>
#include<conio.h>
typedef struct
{
enum tagfield {female,male} sex;
union
{
int child;
int beard,;

u;
}sextype;
typedef struct
{

int m,d,y;
}date;
typedef struct
{

char name[10];

int age;

float salary;

date dob;

sextype sexinfo;
}humanbeing;

void main()

{
humanbeing p1;
pl.dob.m=2;
pl.dob.d=11;

pl.dob.y=1994;

pl.sexinfo.sex=female;

pl.sexinfo.u.child=4;
printf("year=%d/%d/%d",p1l.dob.m,pl.dob.d,p1.dob.y);
printf(*\n sex=%d b=%d",p1.sexinfo.sex,pl.sexinfo.u. child);
getch();

Page 1

Data structures and Applications BCS304

14 SELF REFERENTIAL STRUCTURES
“Self —referential structures are those structures that contain a reference to data of its same

type as that of structure. i.e one or more of the components of the structure will be a pointer toitself.”

Example 1
struct node
{
intval;
struct node*next;
Hist;
Example 2:
typedef struct
{
char data;
struct list * link;
Hist;
In this example each instance of the structure list have two components data and link.
Data is a single character, while link is a pointer to a list structure.
The value of link is either the address in memory of an instance of list or NULL pointer.

Program to illustrate self-referential structures
#include <stdio.h>

#include <conio.h>

typedef struct

{

char data;
struct list *link;
Hist;
void main()
{
list11,12,13;
I1.data="a";
12.data="b";
I3.data='c";
11.link=12.link=13.link =NULL;
11.link=&I1;
12.link=&12;
printf("\n data values of 11=%d,12=%d,13=%d",|1.data,|2.data,|3.data);
printf("\n link of 11,12,13=%d %d %d",11.link,12.link,13.1ink);
getch();

Page 1

Data structures and Applications BCS304

Difference between structure and union

1.The keyword struct is used to define a
Structure

1. The keyword union is used to define a union.

2. When a variable is associated with a
structure, the compiler allocates the memory
for each member.

The size of structure is greater than or equal to
the sum of sizes of its members. The smaller
members may end with unused slack bytes.

2. When a variable is associated with a union,
the compiler allocates the memory by
considering the size of the largest memory.

So, size of union is equal to the size of largest
member.

3. Each member within a structure is assigned
unique storage area of location.

3. Memory allocated is shared by individual
members of union.

4. The address of each member will be in
ascending order. This indicates that memory
for each member will start at different offset
values.

4. The address is same for all the members of a
union. This indicates that every member begins
at the same offset value.

5 Altering the value of a member will not
affect other members of the structure.

5. Altering the value of any of the member will
alter other member values.

6. Individual member can be accessed at a time

6. Only one member can be accessed at a time.

7. Several members of a structure can initialize
at once.
Ex: struct Book
{
int isbn;
float price;
char title[20];
}book;
Total memory reserved will be
Sizeof(int)+sizeof(float)+(20*sizeof(char))

7. Only the first member of a union can be
initialized.
Ex: union Book
{
int isbn;
float price;
char title[20];
}book;
Total memory reserved will be
Max(Sizeof(int)+sizeof(float)+(20*sizeof(char))

15 POINTERS

“Pointers are variables that hold address of another variable of same datu type™.

Pointers are one of the most distinct and exciting features of C language. It provides power and

flexibility to the language.

Benefit of using pointers

e Pointers are more efficient in handling Array and Structure.

¢ Pointer allows references to function and thereby helps in passing of function as arguments to

other function.

¢ It reduces length and the program execution time.

e Itallows C to support dynamic memory management.

Page 1

Data structures and Applications BCS304

Concept of Pointer

Whenever a variable is declared, system will allocate a location to that variable in the memory,
to hold value. This location will have its own address number. Let us assume that system has allocated
memory location 80F for a variable a.

Example : inta=10;

Vel

10

1
Location a

80F:-

+ name of location

T~ address

The value 10 can be accessed by either using the variable name a or the address 80F.Since the
memory addresses are simply numbers they can be assigned to some other variable. The variable that
holds memory address are called pointer variables. A pointer variable is therefore nothing but a
variable that contains an address, which is a location of another variable. Value of pointer variable will

be stored in another memory location.

address of "a“

- .
e ptr « pointer name
i D 82C
- ~ pointoer P
g
|10 "I" address of pointer

Figure 5: Pointer variable
Declaring a pointer variable
General syntax of pointer declaration is, data-type *pointer_name;
Data type of pointer must be same as the variable, which the pointer is pointing. void type

pointer works with all data types, but isn't used oftenly.

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to pointer variable.
Pointer variable contains address of variable of same data type. In C language address operator & is
used to determine the address of a variable. The & (immediately preceding a variable name) returns the
address of the variable associated with it.

inta=10;
int *ptr ; //pointer declaration

Page 1

Data structures and Applications BCS304

ptr = &a ; //pointer initialization
or,

int *ptr = &a ; //initialization and declaration together

Pointer variable always points to same type of data.
float &;

float *ptr;

ptr = &a;

Dereferencing of Pointer
Once a pointer has been assigned the address of a variable. To access the value of variable, pointer is
dereferenced, using the indirection operator *.

void main()

{
inta,*p;
a=10;
p=&a;

printf("%d",*p); //this will print the value of a.
printf("%d",*&a); //this will also print the value of a.
printf("%u",&a); //this will print the address of a.
printf("%u",p); //this will also print the address of a.
printf("%u",&p); //this will also print the address of p.

}
Pointer and Arrays
When an array is declared, compiler allocates sufficient amount of memory to
contain all the elements of the array. Base address which gives location of the first element is also
allocated by the compiler.
Suppose we declare an array arr,
intarr[5]={ 1, 2,3,4,5};
Assuming that the base address of arr is 1000 and each integer requires two byte,

the five element will be stored as follows in figure 6

Figure 6: Array Representation
Here variable arr will give the base address, which is a constant pointer pointing to
the element, arr[0]. Therefore arr is containing the address of arr[0] i.e 1000.

We can declare a pointer of type int to point to the array arr.

Page 20

Data structures and Applications BCS304

int *p;

p=arr,

or p = &arr[0]; //both the statements are equivalent.

Now we can access every element of array arr using p++ to move from one element to another. NOTE
: You cannot decrement a pointer once incremented. p-- won't work.

Pointer to 1-D Array

As studied above, we can use a pointer to point to an Array, and then we can use

that pointer to access the array.

Lets have an example,

inti;

inta[5] ={1, 2, 3, 4, 5},

int *p = a; // same as int*p = &a[0]
for (i=0; i<5; i++)

{

printf("%d", *p);

p++;

}

In the above program, the pointer *p will print all the values stored in the array one by one. We can also
use the Base address (a in above case) to act as pointer and print all the values.
Replacing the printf(*%d™.*p): statement of above example ,with below mentioned statements. Let’s see
what will be the result

e printf(*“%d”.a[i]); prints the array, by incrementing index

o printf(*%d™.i[a]); this will also print elements of array

o printf(**%d",a+i); this will also print address ot all elements of array

o printf(*%d",*(a+1)); this will also print values of all elements of array

e printf(*%d”,*a); this will print value ot a[0] only

e a++; compile time error, we cannot change base address of the array.

Pointers to multidimensional array
A multidimensional array is of form, a[i][j] . Lets see how we can make a pointer point to such
an array. As we know now, name of the array gives its base address. In a[i][j] , a will give the base
address of this array, even a+0+0 will also give the base address, that is the address of a[0][0] element.
Here is the generalized form for using pointer with multidimensional arrays.
((ptr + 1) +j) is same as a[i][j]
Example program for pointers 2D-array

#include<stdio.h>
int main()

Page 21

Data structures and Applications BCS304

{
inta[][3] ={1,2,3,4,5,6};
int (*ptr)[3] = a; //passing the address of 1% 1-D array to pointer
printf(“%d%d”, (*ptr)[1], (*ptN[2]);
++ptr; //points to 2™ 1-D array
printf(“%d%d”, (*ptr)[1], (*ptN[2]);
return O;

¥
Output: 2356

2. ARRAYS
Array is a container which can hold fix number of items and these items should be of same

type. Most of the data structures make use of array to implement their algorithms. Following are

important terms to understand the concepts of Array.

An array is a data structure that is a collection of variables of one type that are accessed
through a common name. Each element of an array is given a number by which we can access that
element which is called an index.To refer to a particular location or element in the array we specify the
name to the array and position number of particular element in the array.

Element — cach item stored in an array is called an element.
Index — each location of an element in an array has a numerical index which is used to identify
the element.

21 LINEARARRAYREPRESENTATION
Arrays can be declared in various ways in different languages. For illustration, let's take

C array declaration
intarray [10] = { 35, 33, 42, 10, 14,19, 27, 44, %6, 31}

Figure 8a: Array with 10 elements

clements |35 33 (42 (10 1419 21 M4 2 O

ndex: 0 1 2 3 4 5 6 7 8 9

Size 10

Figure 8b: Array index

Page 22

Data structures and Applications BCS304

As per above shown illustration, following are the important points to be considered.(As shown in
figure 8a and figure 8b)
e Index starts with 0.

e Array length is 10 which mean it can store 10 elements.

o Each element can be accessed via its index. For example, we can fetch element at index 6 as
27.

ADT ARRAY
Objects: A set of pairs<index,value > where for each of index there is a value from the set item. Index

is a finite ordered set of one or more dimensions , for example 0........ n-1} for one dimension, { (0,0
),(0,1),(0.2),(1,0),(1,2),(1,1),(2,1),(2,2),(2,0))} for two dimensions etc.

Functions:
For all A C Array, I C index, x C item, j, size C integer
1. Array create (j, list) = return an array of j dimensions where list is a j-tuple whose ith element is the
size of ith dimension. Items are undefined.
2. ltem retrieve (A, i) = if (1 C index) return the item associated with index value i in array A else return
error.
3.array store (A, i, X) = if (i in index) return an array that is identical to array A expect the new pair
<i,x>has been inserted else return error.

end Array

One Dimensional Array
Declaration:
Before using the array in the program it must be declared

Syntax: data_type array_name[size];
Where , data_type represents the type of elements present in the array. array_name represents the

name of the array. Size represents the number of elements that can be stored in the array.

Example: int age[100]; float sal[15]; char grade[[20];
Here age is an integer type array, which can store 100 elements of integer type. The array sal is
floating type array of size 15, can hold float values. Grade is a character type array which holds 20

characters.

Page 23

Data structures and Applications BCS304

Initialization:
Initialize arrays at the time of declaration.

Syntax:data_type array_namefsize|={valuel, value2,........valueN};
Where ,valuel, value2, valueN are the constant values known as initializers, which are assigned

to the array elements one after another.

Example: int marks[5]={10,2,0,23,4};
The values of the array elements after this initialization are:
marks[0]=10, marks[1]=2, marks[2]=0, marks[3]=23, marks[4]=4;
NOTE:
1. address of an data element in the array can be calculated as:
A[K]=BA(A)+W(K-LOWERBOUND);

Where, A is an array, K is the index of the element for which address has to be calculated ,BA is
the base address of the array A,and W is the size of one element in memory

2. calculating the length of an array
Length = Upperbound-Lowerbound+1

Where , upperbound is index of the last element and lowerbound is index of the first element in

the array

Processing: For processing arrays we mostly use for loop. The total no. of passes is equal to the no. of

elements present in the array and in each pass one element is processed.

Example: This program reads and displays 3 elements of integer type.
#include<stdio.h>

main()
{
int a[3],i;
for(i=0;i<=2;i++) //Reading the array values
{
printf(““enter the elements™); scanf(“%d"”,&ali]):
}
for(i=0;i<=2;i++) //display the array values
{
printf(*%d”.a[i]); printf(*"\n"™);
¥
}

Page 24

Data structures and Applications BCS304

Example: C Program to Increment every Element of the Array by one & Print Incremented

Array.

#include <stdio.h> void main()

{

¥

int i

intarray[4] = {10, 20, 30, 40};
for (Ii=0;i<4;i++)

arr[i]++;

for (Ii=0;i<4;i++)
printf("%d\t", array[i]);

22 OPERATIONS ON ARRAYS
Following are the basic operations supported by an array.

Traversal —processing each element in the list.

Insertion —adding a new element at given index to the list.

Deletion —removing an element at givenindex from the list.

Search — finding the location of the element with a given value or the record with a givenkey
Sorting: arranging the elements in some type of order.

Merging: Combing two lists into a single list.

. Traversing linear arrays

Let A be the array in the memory of the computer. If the operation requied is to print the

contents of each element of A OR Count the number of elements of A. Then this is accomplished by

traversing A.

Traversing is accessing and processing each element in the array A exactly once.

Algorithm: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm

traverses LA applying an operation PROCESS to each element of LA using while loop.

1. [Initialize Counter] set K:=LB

2. Repeat step 3 and 4 while K< UB

3. [Visit element] Apply PROCESS to LA [K]
4. [Increase counter] SetKi=K+1

[End of step 2 loop]
5. Exit

Page 25

Data structures and Applications BCS304

2. Inserting

e Let A be a collection of data elements stored in the memory of the computer. Inserting refers to
the operation of adding another element to the collection A.

e Inserting an element at the “end” of the linear array can be easily done provided the memory
space allocated for the array is large enough to accommodate the additional element.

e Inserting an element in the middle of the array, then on average, half of the elements must be
moved downwards to new locations to accommodate the new element and keep the order of the

other elements.
Algorithm:

INSERT(LAN,K,ITEM)
HERE LA is a linear array with N elements and K is a positive integer such that K<=N. this

algorithm inserts an element ITEM into Kth position in LA.
1.[Initalize the counter]. Set J=N.
2.repeat steps 3 and 4 while J>=K
3.[move jth element downward] set LA[J+1]=LA[J].
4.[Decrease the counter] set J=J-1
[end of step 2 loop]
5.[insert element] set LA[K]A=ITEM
6.[reset N] set N=N+1
7.Exit

3. Deleting
Algorithm:
DELETE(LAN,K,ITEM)
HERE LA is a linear array with N elements and K is a positive integer such that K<=N. this
algorithm deletes an element ITEM into Kth position in LA.
1. Set ITEM=LA[K]
2. repeat for J=K to N-1
3.[move j+1st element upward] set LA[J]=LA[J+1].
4.[end of step 2 loop]
5.[reset N] set N=N-1
6.Exit

Page 26

Data structures and Applications BCS304

4. Sorting
Algorithm:
BUBBLE SORT(DATA,N)
Here DATA is an array with N elements . THIS Algorithm sorts the elemts in DATA.
1. repeat steps 2 and 3 for k=1 to N-1
2. [Initalize the pass pointer PTR]. Set PTR=1.
3. Repeat while PTR<=N-K :[Executes pass]
(a) if DATA[PTR]>DATA[PTR+1] then
Interchange DATA[PTR] and DATA[PTR+1]
[end of IF structure]
(b) set PTR=PTR+1
[End of inner loop]
[end of stepl outer loop]
4.Exit

5. Searching
Algorithm:
e LINEAR SEARCH(DATAN,ITEM,LOC)
Here DATA is a linear array with N elements and ITEM is a given item of information. this
algorithm finds the location LOC of item in DATA or set LOC=0 if the search is unsuccessful
1.[Insert ITEM at the end of DATA]. Set DATA[N+1]=ITEM.
2.[initialize the counter] set LOC=0,FOUND=0
3.[Search for ITEM]
Repeat for j=0 to N-1
If(ITEM=DATA[J]) then SET FOUND=1 and break
[end of loop]
4.[Succesful?] if FOUND=1Then SUCCESSFUL
else UNSUCCESSFUL
6. Exit

¢ BINARY SEARCH(DATA,LB,UB,ITEM,LOC)

Here DATA is a sorted array with lower bound LB and upper bound UB and ITEM is a given
item of information. The variables BEG, END and MID denote respectively the beginning, end and
middle locations of a segment of elements of data. This algorithm finds the location LOC of item in

DATA or sets LOC=NULL

Page 27

Data structures and Applications BCS304

1.[Initialize segment variables].

Set BEG=LB,END=UB and MID=INT((BEG+END)/2);
2. repeat steps 3 and 4 while BEG<=END and DATA[MID]'=ITEM
3. if ITEM<DATA[MID] then

Set END=MID-1

ELSE
Set BEG=MID+1
[end of loop]
4. set MID=INT(BEG+END)/2
5. if DATA[MID]=ITEM Then
set LOC=MID

else

set LOC=NULL

6. Exit

Page 28

Data structures and Applications BCS304

TWO DIMENSIONAL ARRAYS

Arrays that we have considered up to now are one dimensional array, a single line of elements.
Often data come naturally in the form of a table, e.g. spreadsheet, which need a two-dimensional array.
Declaration: The syntax is same as for 1-D array but here 2 subscripts are used.

Syntax: data_type array_name[rowsize][columnsize];

Where, Rowsize specifies the no.of rows Columnsize specifies the no.of columns.

Example: int a[4][5];
This is a 2-D array of 4 rows and 5 columns. Here the first element of the array is a[0][0] and last

element of the array is a[3][4] and total no.of elements is 4*5=20.

Col 0 Col 1 Col 2 Col 3 Col 4
Row 0 a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]
Row 1 a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]
Row 2 a[2][1] a[2][2] a[2][2] a[2][3] a[2][4]
Row 3 a[3][0] a[3][1] a[3][2] 3a[3][3] a[3][4]

Initialization:

2-D arrays can be initialized in a way similar to 1-D arrays.
Example: int m[4][3]={1,2,3,4,5,6,7,8,9,10,11,12};
Example: int m[][3]={ {1,10}, {2,20,200}, {3}, {4,40,400} };

2D ARRAY REPRESENTATION USING COLUMN MAJOR ORDER AND ROW MAJOR
ORDER

1. In case of Column Major Order:

The formula is:

Page 29

Data structures and Applications BCS304

LOC (A[J, K]) =Base (A) +w [M (K-1) + (J-1)]

Here

LOC(A[J, K] is the location of the element in the Jth row and Kth column.

Base (A) : is the base address of the array A.
w : is the number of bytes required to store single element of the array A.
M : is the total number of rows in the array.
J : is the row number of the element.

K : is the column number of the element.

E.Q.

A 3 x 4 integer array A is as below:
Subscript Elements Address

1,1) 10 1000
1) 20 1002
(3,1) 50 1004
(1,2) 60 1006
2,2) 90 1008
(3,2) 0 1010
(1,3) 30 1012
(2,3) 80 1014
(3,3) =5 1016
(1,4) =c 1018
2,4) & 1020
(3,4) =9 1022

Suppose we have to find the location of A [3, 2]. The required values are:

Base (A) : 1000

w : 2 (because an integer takes 2 bytes in memory)
M : 3

J : 3

K : 2

Now put these values in the given formula as below:
LOC (A [3,2]) =1000 + 2 [3 (2-1) + (3-1)]
=1000 +2[3 (1) + 2]

= 1000 + 2 [3 + 2]
= 1000 + 2 [5]
=1000 + 10 = 1010

2. In case of Row Major Order:
The formula is:

LOC (A [J, K]) =Base (A) + w [N (J-1) + (K-1)]
Here

Page 30

Data structures and Applications BCS304

LOC(A[J,K]) : is the location of the element in the Jth row and Kth column.
Base (A) : is the base address of the array A.
w : is the number of bytes required to store single element of the array A.
N : is the total number of columns in the array.
J : is the row number of the element.
K : is the column number of the element.
E.g.

A 3 X 4 integer array A is as below:

Subscript Elements Address

1,1 10 1000
(1,2) 60 1002
(1,3) 30 1004
(1,9 55 1006
2,1) 20 1008
(2,2) 90 1010
(2.3) 80 1012
(24 65 1014
(3,1) 50 1016
(3,2) 20 1018
(3,3) 75 1020
(3,4) 79 1022

Suppose we have to find the location of A [3, 2]. The required values are:

Base (A) : 1000

w : 2 (because an integer takes 2 bytes in memory)
N : 4

J : 3

K : 2

Now put these values in the given formula as below:
LOC (A[3,2])=1000 + 2[4 (3-1) + (2-1)]
=1000+2[4(2) +1]

=1000 + 2 [8 + 1]
=1000 + 2 [9]

=1000 + 18
=1018

Example 1:

Write a C program to find sum of two matrices
#include <stdio.h>

#include<conio.h>

Page 31

Data structures and Applications BCS304

void main()

{

¥

float a[2][2], b[2][2], c[2][2];

intij;

clrscr();

printf("Enter the elements of 1st matrix\n");

/* Reading two dimensional Array with the help of two for loop. If there is an array of 'n’

dimension, 'n' numbers of loops are needed for inserting data to array.*/
for(i=0;i<2;1++)
for(j=0;j<2;j++)
{
scanf("%f",&a[i][j]);
}
printf("Enter the elements of 2nd matrix\n™);
for(i=0;i<2;i++)
for(j=0;j<2;j++)
{
scanf(""%f",&bl[i][j]);
}
[* accessing corresponding elements of two arrays. */ for(i=0;i<2;i++)
for(j=0;j<2;j++)
{
clillj1=alil[i]+b[i1j]; /* Sum of corresponding elements of two arrays. */
}
/* To display matrix sum in order. */
printf("\nSum Of Matrix:");
for(i=0;i<2;i++)

{
for(j=0;j<2;j++)
printf("%M\t", c[i][j]);
printf(*\n");

}

getch();

Example 2: Program for multiplication of two matrices
#include<stdio.h>

#include<conio.h>

int main()

{

intijk;

int rowl,coll,row2,col2,row3,col3;

int mat1[5][5], mat2[5][5], mat3[5][5];
clrscr();

Page 30

Data structures and Applications BCS304

printf(*\n enter the number of rows in the first matrix:™):
scanf(“%d”, &rowl);
printf(*\n enter the number of columns in the first matrix:”);
scanf(*%d". &coll);
printf(*\n enter the number of rows in the second matrix:™);
scanf(*%d”, &row2);
printf{*“\n enter the number of columns in the second matrix:™);
scanf(*%d”, &col2);
if(coll !'=row2)
{

printf(*\n The number of columns in the first matrix must be equal to the number of rows
in the second matrix ™);

getch(); exit();
b
row3=row1; col3= col2;
printf(*\n Enter the elements of the first matrix™);
for(i=0;i<rowl;i++)
{

for(j=0;j<coll;j++)

scanf(*%d”.&mat1 [i][j]);
¥
printf(*\n Enter the elements of the second matrix™);
for(i=0;i<row2;i++)

{
for(j=0;j<col2;j++)
scant(*“%d”.&mat2[i][j]):
}
for(i=0;i<row3;i++)
{
for(j=0;j<col3;j++)
{
mat3[i][j]=0;
for(k=0;k<col3;k++)
mat3[i][j] +=matl[i][K]*mat2[K][]];
}
}

printf(“\n The elements of the product matrix are™):
for(i=0;i<row3;i++)

{
printf(*\n™);
for(j=0;j<col3;j++)
printf(*\t %d”, mat3[i][j]):
}

Page 3

Data structures and Applications BCS304

return O;

}
Output:
Enter the number of rows in the first matrix: 2
Enter the number of columns in the first matrix: 2
Enter the number of rows in the second matrix: 2
Enter the number of columns in the second matrix: 2
Enter the elements of the first matrix
1234
Enter the elements of the second matrix
5678
The elements of the product matrix are
19 22
4350

Example 3: Program to find transpose of a matrix.
#include <stdio.h>
int main()
{
int a[10][10], trans[10][10], r, c, i, j;
printf("Enter rows and column of matrix: ");
scanf("%d %d", &r, &c);
printf("\nEnter elements of matrix:\n");
for(i=0; i<r; i++)
for(j=0; j<c; j++)
{
printf("Enter elements a%d%d: ",i+1,j+1);
scanf("%d", &a[i][j]);
}
/* Displaying the matrix a[][] */ printf("\n Entered Matrix: \n");
for(i=0; i<r; i++)
for(j=0; j<c; j++)

{
printf("%d ", a[i][j]);
if(j==c-1)
printf(*\n\n");

}

/* Finding transpose of matrix a[][] and storing it in array trans[][]. */
for(i=0; i<r;i++)
for(j=0; j<c; j++)
{
trans[j][i1=a[i][il;
}

Page 3

Data structures and Applications BCS304

[* Displaying the array trans[][]. */ printf("\nTranspose of Matrix:\n");
for(i=0; i<c;i++)
for(j=0; j<r;j++)

{
printf("%d " trans[i][j]);
if(j==r-1)
printf("\n\n");

}

return O;

¥
4. DYNAMIC MEMORY ALLOCATION

The memory allocation which is used till now was static memory allocation. So the memory that
could be used by the program was fixed. So it is not possible to allocate or de allocate memory during
the execution of the program. It is not possible to predict how much memory will be needed by the
program at run time.

For example assume an array with size 20 elements is declared, which is fixed. So if at run time
values to be stored in array are less than 20 then wastage of memory occur or our program may fail if
more than 20 values are to be stored in to that array. To solve the above problems and allocate memory
during runtime dynamic memory allocation is used.

The process of allocating memory during the runtime is called as DMA (dynamic memory
allocation) and memory gets allotted in heap area of program stack.

Example : a new area of memory is allocated using malloc().On success, malloc() returns a
pointer to the first byte of allocated memory. The returned pointer is of type void, which can be type
cast to appropriate type of pointer. The memory allocated by malloc() contains garbage value . when
the requested memory is not available, the pointer NULL is returned. when allocated memory is no
longer required , it is freed by using another function free().

void main()

{

inti,*pi;
float f,*pf;
pi=(int*)malloc(sizeof(int));
pf=(float*)malloc(sizeof(float));
*pi=1024;
*pf=3.14;
printf{(“an interger=%d.an float number=%f",*pi,* pf);

free(pi);

Page 3

Data structures and Applications BCS304

free(pf);
getch();

The following functions are used in C for dynamic memory allocation and are defined in <stdlib.h>
1. malloc(size): Memory Allocation

This function is used to allocate memory dynamically. malloc() allocate a single large block of
contiguous memory according to the size specified. The argument size specifies the number of bytes to

be allocated.

On success, malloc() returns a pointer to the address of first byte of allocated memory. The
returned pointer is of type void, which can be type cast to appropriate type of pointer. The memory
allocated by malloc() contains garbage value .

If there is insufficient memory to make the allocation, the returned value is NULL.

Declaration: void *malloc(size_t size);

(datatpe*) ptr = (datatpe*)malloc(sizeof(datatype));

Where,
ptr is a pointer variable of data_type
size is the number of bytes
EX: int *ptr;
ptr = (int *) malloc(100*sizeof(int));
2. calloc(n, size): Contiguous Allocation

This function is used to allocate multiple blocks of contiguous memory.

It takes 2 arguments. The first argument specifies the number of blocks and the second one

specifies the size of each block. The memory allocated by calloc() is initialized to zero.

On success, calloc() returns a pointer to the address of first byte of allocated memory. The
returned pointer is of type void, which can be type cast to appropriate type of pointer

If there is insufficient memory to make the allocation, the returned value is NULL.
Declaration: void *calloc(size_t n, size_t size);

(datatype*) ptr=(datatype*)calloc(n,sizeof(datatype));

Where,

Page 3

Data structures and Applications BCS304

ptr is a pointer variable of type int

n is the number of block to be allocated
size is the number of bytes in each block
Ex: int *x =(int*) calloc (10, sizeof(int));

The above example is used to define a one-dimensional array of integers. The capacity of this

array is n=10 and x [0: n-1] (x [0, 9]) are initially O
Macro CALLOC

#define CALLOC (p, n,s)

if (! ((p) = calloc (n, s)))\

{ fprintf(stderr, “Insuffiient memory”);
exit(EXIT_FAILURE):}

3. realloc(): realloc(ptr, size)

The function realloc() is used to change the size of the memory block. It alters the size of the

memory block without losing the old data. This function takes two arguments, first is a pointer to the

block of memory that was previously allocated by malloc() or calloc() and second one is the new size for
that block.

e Before using the realloc() function, the memory should have been allocated using malloc() or
calloc() functions.

e The function relloc() resizes memory previously allocated by either mallor or calloc, which means,
the size of the memory changes by extending or deleting the allocated memory.

o If the existing allocated memory need to extend, the pointer value will not change.

o If the existing allocated memory cannot be extended, the function allocates a new block and copies
the contents of existing memory block into new memory block and then deletes the old memory
block.

¢ When realloc() is able to do the resizing, it returns a pointer to the address of first byte of the new
block and when it is unable to do the resizing, the old block is unchanged and the function returns
the value NULL

Declaration: void *realloc(void *ptr ,size_t newsize);

(datatype*)ptr=(datatype*)realloc(ptr, newsize)

Example: (int *)ptr = (int *) malloc(sizeof(int));

ptr = (int *) realloc(ptr, 2*sizeof(int));

Page 3

Data structures and Applications BCS304

Macro REALLOC

#define REALLOC(p,S)\

if (1((p) = realloc(p,s)))

{ \ fprintf(stderr, "Insufficient memory");
exit(EXIT_FAILURE);\)\

4. free()

Dynamically allocated memory with either malloc() or calloc () does not return on its own. The

programmer must use free() explicitly to release space.

This function is used to release the memory space allocated dynamically. The memory released by free()
is made available to the heap again and can be used for some other purpose. We should not try to free

any memory location that was not allocated by malloc(), calloc() or realloc().

Syntax: free(ptr);
ptr = NULL,;
This statement cause the space in memory pointer by ptr to be deallocated

The following program illustrates Dynamic memory allocation.
void main()
{
int *p,n,i;
printf(**Enter the number of integers to be entered™);
scanf(~%d",&n):
p=(int *)malloc(n*sizeof(int)); /* This is same as “*(int *)calloc(n.sizeof(int))"*/
[* If we write ““(int *)malloc(sizeof(int))” then only 2 byte of memory will be allocated
dynamically*/
if(p==NULL)
{
printf(**Memory is not available™); exit(1);
}
for(i=0;i<n;i++)
{
printf(*Enter an integer™):
scanf{~%od”.p+1);
}
for(i=0;i<n;i++)
printf("%d\t”, *(p+i));

Page 3

Data structures and Applications BCS304

2.4 DYNAMICALLY ALLOCATED ARRAYS
Array can be dynamically allotted using malloc(), calloc() or realloc() functions, similarly the

allotted memory can be freed after the use of array using free() function.
One dimensional array

When large programs are written, it is difficult to determine how large array to use. So, solution
to this problem is to defer this decision to runtime and allocate the required array size. The advantage of
dynamic array is that the memory for the array of any desired size can be allotted. There is no need to
declare a fixed size array.

During the use of dynamically allocated arrays the following changes are required in first few
lines of main function of program

inti,n,*list;
printf(*\n enter the n value to generate™);
scanf(*%d"”,&n);

if(n<1)

{
fprintf(stderr,”improper value of \n™);
exit(EXIT_FAILURE);

}

MALLOC(list,n*sizeof(int));
This above main function fails only when n<1 or when sufficient memory is not allotted.

Example program for illustration of use of dynamic array:-
#include<stdio.h>
#include<stdlib.h>

void main()

{
inti,n;
int *ptr;

printf(*\n enter the number of elements\n™):
scant(“%d".&n);
ptr=(int*)malloc(sizeof(int)*n);
if(ptr==NULL)

{
printf(*\n insufficient memory™);
return;
k
printf(*\n enter the n elements™);
for(i=0;<n;i++)
scanf(“%d”,(ptr+1));
printf(“the given array elements are\n™);
for(i=0;i<n;i++)
printf(*“%d”,*(ptr+i));
getch();

Page 3

Data structures and Applications BCS304

Two dimensional array
A two dimensional array is represented as a one dimensional array in which each element is itself

a one dimensional array.(As shown in figure 9)
int X[3][5];
Here, actually a one dimensional array x is created whose length is 3 and each element of x is a one

dimensional array whose length is 5.
o1 M1 2 Bl [4]

x[0]
X[1]
x[2]

Figure 9: Two dimensional array
C finds the element x[i][j] by first accessing the point in x[i].this pointer gives the address in memory of
the zeroth element of row I of the array. Then by adding j*sizeof(int) to this pointer , the address of the
[j]th elemnt of row i is determined.

Example program for allocating memory dynamically for 2D array
#include<stdio.h>
#include<conio.h>
#include<alloc.h>

void main()
{
int **a;
intp, q;
int **make2darray();

printf(“\n enter the no of rows™);
scanf(“%d”.&p):

printf(*\n enter the no of cols™):
scanf(*“%d”,&q);
a=make2darray(p,q);

printf(*’successtul memory creation address is”.a);

getch();

}

int **make2darray(int rows ,int cols)

{
int **x, i;
x=malloc(rows*sizeof(*x));
for(i=0;i<rows;i++)

x[i]=malloc(cols*sizeof(**x));

return Xx;

}

Page 3

Data structures and Applications BCS304

2.4 APPLICATIONS OF ARRAYS

The two major applications of the arrays are polynomial and sparse matrix
1. POLYNOMIALS

Polynomial is a sum of terms where each term has a form .x°, where x is the variable, a is the
coefficient and e is the exponent.
Examples :

A(x) = 3xP+2x°+4

B(x) = xX*+10x*+3x%+1

The largest exponent of a polynomial is called its degree.
In the above example, degree of first polynomial is 20 and for the second polynomial it is 4.
Note: Coefficients that are zero are not displayed, the term with exponent zero does not show the
variable i.e. 4x*+5x+1 where 1 is a term having exponent zero so variable is not displayed.

Operations on polynomials
e Addition

e Subtraction
e Multiplication
e Butdivision is not allowed.

Polynomial addition is defined as :

Assume A(x)=Yaix' and B(x)=Ybjx' then A(x)+ B(x)=3 (ai+hj)x!
Polynomial multiplication is defined as A(x).B(x)=) A(X)=Z‘diXi.(ijXi))
Polynomial representation

In ¢, typedef is used to create the polynomial as below:-

#define MAX_DEGREE 101
typedef struct
{

int degree;

float coef[MAX_DEGREE];
}polynomial,
polynomial a;

Conisder a is of type polynomial and n>MAX_DEGREE then polynomial A(x)=Yaix' fori=0ton
would be represented as

a.degree=n;

a.coeffi]=ani,0<=i<=n.

Page 3

Data structures and Applications BCS304

Useful polynomial representation
To preserve space, an alternative polynomial representation is given below which uses only one

global array, terms to store all polynomials
#define MAX_TERMS 100
typedef struct

{

float coeff;

int expon;
}polynomial,
polynomial terms[MAX_TERMS];
int avail=0;

ADT polynomial
Structure Polynomial is
objects: p(x)=a;x* + . . a,x® ; a set of ordered pairs of <ei,ai> where ai in Coefficients
and ei in Exponents, ei are integers >= 0

functions:
for all poly, poly1, poly2 = Polynomial, coef =Coefficients, expon < Exponents
Polynomial Zero() ::= return the polynomial, p(x) = 0
Boolean IsZero(poly) ::= if (poly)

return FALSE

else

return TRUE

Coefficient Coef(poly, expon) ::= if (expon = poly)
return its coefficient
else

return Zero
Exponent Lead_Exp(poly) ::= return the largest exponent in poly
Polynomial Attach(poly,coef, expon) ::= if (expon < poly)
return error
else
return the polynomial poly with the term <coef,
expon> inserted
Polynomial Remove(poly, expon)::= if (expon < poly)
return the polynomial poly with the term whose
exponent is expon deleted
else
return error
Polynomial SingleMult(poly, coef, expon) ::= return the polynomial poly * coef * xexpon
Polynomial Add(poly1, poly2) ::= return the polynomial polyl +poly2
Polynomial Mult(poly1, poly2)::= return the polynomial polyl e poly2
End Polynomia

Page 3

Data structures and Applications BCS304

Polynomial addition
Function which adds two polynomials A and B giving D, represented as D=A+B. using previous

polynomial representation the following figure 10 shows how two polynomials are represented
Ex: A(X)=2x1090+1
B(X) =x*+10x3+3x%+1

starta fPaasha starnth Fnishb avail

i 4 4 -

2 1 1 10 3 1
1000 O “ 3 2 0

coef

e

0 1 2 3 4 s &
Figure 10: Array representation of polynomial

The index of the first term of A and B is given by startA and startB respectively,while finishA
and finishB give the index of the last term of A and B. the index of the next free location in the array is
given by avail.

Example startA=0,finishA=1,startB=2,finish=5 and avail=6.

This representation ha no limitation on the number of terms in a polynomial but total number of
non-zero terms should not exceed MAX_TERMS.

Poly is used to refer a polynomial and is translated poly into a <start,finish>pair. Any polynomial
A that has n nonzero terms has startA and finishA such that finishA=startA+n-1.

Function To Add Two Polynomials
void padd(int startA,int finishA,int startB, int finish,int *startD,int *FINISHd)
{
float coefficient;
*startd=avail,
while(startA<=finiSHs && startb<=finish)
switch(COMPARE((terms[startA].expon,terms[startB].expon))
{
case -1: /* a.expon<b.expon)*/
attach(terms[startB].coef,terms[startB].expon);
startB++;
break;
case 0:/* equal exponents*/
coefficient=terms[startA].coef+terms[startB].coef;
if(coefficient)
attach(coefficient , terms[startA].expon);
startA++,
startB++;
break;
case 1: /*a.expon>b.expon*/
attach(terms[startA].coef,terms[startA].expon);
startA++;

Page 3

Data structures and Applications BCS304

}
for(;startA<=finishA;startA++)

attach(terms|[startA].coef,terms[startA].expon);
for(;startB<=finishB;startB++)
attach(terms|[startB].coef,terms[startB].expon);
*finishD=avail-1;
}
Function To Add a new term
void attach(float coefficient ,int exponent)

{
if(avail>=MAX_TERMS)
{
printf{stderr.”too many terms in the polynomial \™);
exit(0);
¥
terms[avail].coef=coefficient;
terms[avail++].expon=exponent;
}

2. SPARSE MATRICES
Matrix contains m rows and n columns of elements. it has m rows and n columns. In general

mxn, is used to designate a matrix with m rows and n columns. The total no of elements in such matrix
is m*n. If m equals n then matrix is square.

“Sparse matrix: A matrix containing more number of zero entries, such matrices is called as
sparse matrix.”

In figurell, since this matrix contains many zeros it is called as sparse matrix. Here 8 of 36
elements are only having non-zero values so it is called as sparse matrix. When sparse matrix is
represented as two dimensional array hence space is wasted so need another form of representation to

save memory where only non-zero values are stored.

col0 col1l col 2 col 3 col4 colS

row 0 15 0 0 22 0 15
row 1 0 11 3 0 0 0
row 2 0 o 0 -6 0 0
row 3] (1] (0 0 0 0
row 4 91 0 0 0 0 0
row S 0 0 28 0 0 0

Figure 11: sparse matrix

Page 3

Data structures and Applications BCS304

ADT sparse matrix

Structure Sparse_Matrix is
objects: a set of triples, <row, column, value>, where row and column are integers and
form a unique combination, andvalue comes from the set item.
functions:
for all a, b Sparse_Matrix, x < item, i, j, max_col, max_row < index
Sparse_Marix Create(max_row, max_col) ::=
return a Sparse_matrix that can hold up to max_items = max _row x
max_col and whose maximum row size is max_row and whose
maximum column size is max_col.
Sparse_Matrix Transpose(a) ::=
return the matrix produced by interchanging the row and column
value of every triple.
Sparse_Matrix Add(a, b) ::=
if the dimensions of a and b are the same
return the matrix produced by adding corresponding items, namely
those with identical row and column values.
else
return error
Sparse_Matrix Multiply(a, b) ::=
if number of columns in a equals number of rowsin b
return the matrix d produced by multiplying a by b according to the
formula:d [i] [j]=2(a[i][k]*b[k][;]) where d (i, j) is the (i,j)th element
else
return error.
End Sparse_Matrix

Sparse Matrix representation
A array of triples <row,col,value> is used to represent sparse matrix. In triples the row indices

are in ascending order as well as column indices are also in ascending order.(as shown in figure 12).
First row in triplet representation gives the total number of rows, total number of columns and total
number of non-zero values in sparse matrix.

Create operation of sparse matrix is written as

#define MAX_TERMS 101

typdef struct

{
int col;
int rows;
int value;

Herm A[MAX_TERMS];
The above Sparse matrix is represented as triples.

Page 3

Data structures and Applications BCS304

sparse matrix as triples

row col value
a[0] 6 6 b}
[1] 0 0 15
[2] 0 3 22
[3] 0 5 -15
[4] 1 1 11
[5] 1 2 3
[6] 2 3 -6
[7] 4 0 91
[8] 5 2 28

Figure 12: Triple representation

Function: Triplet of a sparse matrix.
create_triplet_matrix(term a[],term b[]){

int k=1;
for(int i=0; i<rows; i++){
for(int j=0; j<col; j++){
if(a[i] [i]*=0){

b[k].row =1,
b[k].col =j;
b[k].value =a[i][j] ;
k++}
}

}

B[0].row = rows;

B[0].col = col;

B[0].value = k-1;

Transposing a Matrix

Transpose of a given matrix is obtained rows and columns. each element a[i][j].In the original
matrix becomes element b[j][i] in the transpose matrix.
The following algorithm is given by

Page 40

Data structures and Applications BCS304

algorithm BAD TRANS
for each row i
take element <i,j,value>;

store it as element <j,i,value> of the
transpose;

end;

- problem: data movement

algorithm TRANS

for all elements in column j
place element <i,j,value> in
element <j,i,value>

end;

- problem: unnecessary loop for each
column

The algorithm indicates that find all the elements in column O and store them in row 0 of the
transpose matrix, find all the elements in columnl and store them in row1 etc. Since the original matrix
ordered the rows, the columns within each row of incorporated in transpose. The first array a is the

original array which the second array b holds the transpose.(As shown in figurel3)

row col value
a[0] 6 6 8
[1] 0 0 15
[2] 0 4 91
[3] 1 1 11
[4] 2 1 3
[5] 2 5 28
[6] 3 0 22
[7] 3 2 -6
[8] 5 0 -15

Figure 13: Transpose of matrix

Page 41

Data structures and Applications BCS304

Function: Transpose a sparse matrix.
void transpose(term a[],term b[])
{
int n,1,J,currentb;
n=a[(].value;
b[0].row=a[0].col;
b[0].col=a[0].row;
b[0].value=n;
if(n>0)
p
I
currentb=1;

for(i=0;i<a[0].col;i++)
for(j=0;j<=n;++)
if(a[j].col==1)

{

e
e

b[currentb].row=a[j].col;
b[currentb].col=a[j].row;

b[currentb].value=a[j].value;

currentb++;

Page 42

Data structures and Applications BCS304

Fast Transpose of a Sparse Matrix

O This algorithm, fast-transpose proceeds by first determining the number of elements in each column of th¢

O This gives us the number of elements in each row of the transpose matrix. From this information, we can d
matrix.

O We now can move the elements in the original matrix one by one into their correct position in the transpos

void fast-transpose(term al[], term b[])
{
/* the transpose of a is placed in b */
int row-terms[MAX-COL], starting-pos[MAX—COL];
int i,j, num—cols = a[0].col, num-terms = a[0].value;
b[0].row = num—cols; b{0].col = a[0].row;
b[0].value = num-terms;
1f {(num-terms > 0) { /* nonzero matrix */
for (i = 0; 1 < num—cols; i++)
row-terms(i] = 0;
for (1 = 1; 1 <= num-terms; i++)
row—terms(ali).col]++;
starting—pos[0] = 1;
for (i = 1; 1 < num—cols; i++)
starting-pos(i] =
starting-pos(i-1] + row-terms[i-1];
for (1 = 1; 1 <= num-terms; i++) {
] = starting-pos(ali].col]++;
blj]l.row = a[il.col; b(j].col = al[i].row;
b[j].value = a[i].value;

orig
pterm

e Ma

Page 43

Data structures and Applications BCS304

3. STRINGS

Strings are one-dimensional array of characters terminated by a null character \0'. Thus a null-
terminated string contains the characters that comprise the string followed by a null. The following
declaration and initialization create a string consisting of the word "Hello™. To hold the null character at
the end of the array, the size of the character array containing the string is one more than the number of
characters in the word "Hello."
char greeting[6] ={'H', e, 'I', 'I', ‘0, \0'};
If you follow the rule of array initialization then you can write the above statem ¢nt as follows —

char greeting[] = "Hello";
Following is the memory presentation of the above defined string in C

Note: Actually, you do not place the null character at the end of a string constant. The C compiler
automatically places the "\O' at the end of the string when it initializes the array.
[Let us try to print the above mentioned string :—
#include <stdio.h>
int main ()
{
char greeting[6] = {'H', 'e",'I', 'I', '0', \O'};
printf("Greeting message: %s\n", greeting);

return O;

¥

When the above code is compiled and executed, it produces the following result:

Greeting message: Hello

Page 44

Data structures and Applications BCS304

ADT STRING

Objects: a finite set of zero or more characters

Functions:

Forall s, t C string,i,j,m C non-negative intergers

String Null(m) = return a string whose maximum length is m characters , but is initally set to NULL we

write NULL as ™.

Integer Compare(s,t) = if s equals t return 0
else if s precedes t return -1
else retun +1

if(Compare(s,NULL)) return FALSE
else return TRUE

if(Compare(s,NULL)) return the number of charactersins

Boolean IsNull(s)

Integer Length(s)
else return O

String Concat(s,t) = if(Compare(t, NULL)) return a string whose elements are those of s followed by
those of t
elsereturn 0

String Substr(s,i,j) = if((j>0) && (i+]-1) < Length (s)) return the string containing the characters of s at
positions i, i+1,,i+j-1
else return NULL

Page 45

Data structures and Applications BCS304

3.2 STRING OPERATIONS

C supports a wide range of built in functions that manipulate null- terminated strings :—
strcpy(sl, s2):- Copies string s2 into string s1.
strcat(sl, s2):- Concatenates string s2 onto the end of string s1.
strlen(s1):- Returns the length of string s1.
stremp(sl, s2):- Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than O if
S1>s2.

strchr(s1, ch); Returns a pointer to the first occurrence of character ch in string s1

Function Description
char *strcat (char *dest, char *src) Concatenate dest and src strings; return result in
dest
char *strncat (char *dest, char *src, int n) Concatenate dest and n characters from src; return
result in dest
int strcmp (char *strl, char *str2) Compare 2 strings;

return <0 if stri<str2;
0 if strl = str2;
>0 if strl > str2

int strncmp (char *strl, char *str2, int n) Compare first n characters;
return < 0 if stri<str2;

0 if strl = str2;

>0 if strl > str2

char *strcpy (char *dest, char *src) Copy src into dest; return dest

char *strncpy (char *dest, char *src, int n) Copy n characters from src into dest; return dest

size_t strlen (char *s) Return the length of °s’

char *strchr(char *s, int c) Return pointer to the first occurrence of cins;
return NULL if not present

char *strrchr(char *s, int c) Return pointer to the last occurrence of c in's;
return NULL if not present

char *strtok(char *s, char *delimiters) Return a token from s;token is surrounded by
delimiters

char *strstr(char *s, char *pat) Return pointer to start of pat in s

size_t strspn (char *s, char *spanset) Scan s for characters in spanset; return length of
span

size_t strcspn (char *s, char *spanset) Scan s for characters not in spanset; return length
of span

char *strpbrk (char *s, char *spanset) Scan s for characters in spanset; return pointer to

first occurrence of a character from spanset

Page 46

Data structures and Applications BCS304

#include <stdio.h>

#include <string.h>

int main ()

{

¥

When the above code is compiled and executed. it produces the following result —

char str1[12] = "Hello";

char str2[12] = "World";

char str3[12];

intlen;

[* copy strlinto str3 */

strcpy(str3, strl);

printf("'strcpy(str3, strl) : %s\n", str3);
strcat(strl, str2);

printf("strcat(strl, str2): %s\n", strl);
/* total lenghth of strl after concatenation */
len = strlen(strl);

printf("strlen(strl) : %d\n", len);

return O;

strepy(str3, strl) : Hello

strcat(strl, str2): HelloWorld
strlen(strl) : 10

STRING INSERTION FUNCTION

void strnins(char *s,char *t,int i)

{

Char string[MAX_SIZE],*temp = string;
if(1 <0 && i>strlen(s))

¢ fprintf(stderr.” position is out of bounds\n™);

exit(EXIT_FAILURE);

¥

if(! strlen(s))

strepy(s,t);
else if if(strlen(t))

Page 47

Data structures and Applications BCS304

{

strncpy(temp, s, i);
strcat(temp, t);
strcat(temp, (s+i));

strcpy(s,temp);

ks

¥

3.3PATTERN MATCHING ALGORITHMS
C programming code to check if a given string is present in another string, For example the

string "programming” is present in “c programming”. If the string is present then it's location (i.e. at
which position it is present) is printed. We create a function match which receives two character pointers
and return the position if matching occurs otherwise returns -1. naive string search algorithm is
implemented in this ¢ program

Brute Force Pseudo-Code

Here’s the pseudo-code
do
if (text letter == pattern letter)
compare next letter of pattern to next
letter of text
else
move pattern down text by one letter
while (entire pattern found or end of text)

1. PATTERN MATCHING BY CHECKING END INDICES FIRST

int nfind(char *string, char *pat)

{
inti,j,start=0;
int lasts = strlen(string)-1;
int lastp = strlen(pat)-1;
int endmatch=lenp;
for(i = 0; endmatch<=lasts ; endmatch++, start++)
{
if(string[endmatch] == pat[lastp])
for(j =0, i =start; j< lastp && string[i] == pat[j]; i++, j++)
if(j == lastp)
return start;
} return -1;
}

2. KNUTH MORRIS PRATT STRING MATCHING ALGORITHMS

int pmatch(char *string,char *pat)

Page 48

Data structures and Applications BCS304

}

inti=0,j=0;
int lens = strlen(string);
int lenp = strlen(pat);
while(i <lens && j < lenp)
{
if(string[i] == pat[j])
{

i++ j++;

else if(j == 0) j++;
else j = failure[j-1]+1;

}
return (if(j == lenp) ? (i-lenp):-1);

Differences between malloc() and calloc()

S.No.

malloc()

malloc() function creates a single block of memory of a
specific size.

The number of arguments in malloc() is 1.
malloc() is faster.

malloc() has high time efficiency. Because no
initialization takes place.

The memory block allocated by malloc() has a garbage
value.

malloc() indicates memory allocation.

Syntax:
ptr=(datatpe*)malloc(sizeof(datatype));

calloc()

calloc() function assigns multiple blocks of
memory to a single variable.

The number of arguments in calloc() is 2.
calloc() is slower.

calloc() has low time efficiency. Because of
zero filling.

The memory block allocated by calloc() is
initialized by zero.

calloc() indicates contiguous allocation.

Syntax:
ptr=(datatpe*)calloc(n, sizeof(datatype));

Page 49

Data structures and Applications BCS304

Pointers Can Be Dangerous

Because pointers provide access to a memory location. Data and executable code exist in memory together,
misuses of pointers can lead to both bizarre effects and very subtle errors.

Potential Problems with Pointers
 uninitialized pointers,
o memory leakage and
« dangling pointers.
Uninitialized pointers (wild ponters)
« Uninitialized pointer pose a significant thread.
o the value stored in an uninitialized pointer could be randomly pointing anywhere in memory.
o Storing a value using an uninitialized pointer has the potential to overwrite anything in your

program, including your program itself
o Never write a declaration like int *p;

Always give your pointers an initial value or Null if you can’t make it point to a real data value. So,
best practice is to pointers to NULL like

Int *p=NULL;
Memory Leakage
A memory leak occurs when all pointers to a value allocated on the heap has been lost.
Over time, memory leaks can cause programs to slow down and, eventually, crash.

Worse, a leaky program may come to take up so much of a systems memory that it interferes with the
operation of other programs on the same system.

Ex: Programmer creates a memory in heap and forget to delete it. This unused un-accessible memory
results in memory leakage.

void main(){
int *p;
p = (int *) malloc(sizeof(int));
Return;}
Dangling Pointers
Dangling pointers refer to a pointer which was pointing at an object that has been deleted.

The pointer still has the address of the object even though the memory for that object has been removed.

Page 50

Data structures and Applications BCS304

Ex:

int main(){
int *ptr = (int *) malloc(sizeof(int));

free(ptr); // ptr is still pointing to the deallocated memory ie non-existing memory

return 0;}

Page 51

Data structures and Applications BCS304

PROGRAMMING EXAMPLES
1) Write a C program to sort N numbers in ascending order using Bubble sort and print both the
given and the sorted array
#include <stdio.h>
#define MAXSIZE 10
void main()
{
intarray[MAXSIZE];
inti, j, num, temp;

printf("Enter the value of num\n");
scanf("%d", &num);
printf("Enter the elements one by one \n");
for (I=0; i <num; i++)
{

scanf("%d", &array[i]);

}
printf("Input array is \n");
for (i =0; i <num; i++)
{
printf("%d\n", array[i]);
}
/* Bubble sorting begins */
for (i=0; i <num; i++)
{
for(G=0;j<(num-i-1);j++)

if (array[j] > array[j + 1])
{

temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}

}
printf("Sorted array is...\n");

for (i =0; i < num; i++)

printf("%d\n", array[i]);

k
¥

2) Write a C program to input N numbers and store them in an array. Do a linear search for a
given key and report success or failure.
#include <stdio.h>
void main()
{
int array[10];
inti, num, keynum, found = 0;
clrscr();
printf("Enter the value of num \n");

Page 52

Data structures and Applications BCS304

scanf("%d", &num);
printf("Enter the elements one by one \n");
for (i =0; i < num; i++)

scanf("%d", &array[i]);

}
printf("Input array is \n");
for (I=0; i <num; i++)

{
k

printf("Enter the element to be searched \n");
scanf("%d", &keynum);
[* Linear search begins */

printf("%d\n", array[i]);

for (I=0;i<num;i++)

if (keynum ==arrayl[i])
{

found=1;

break;
}

}
if (found == 1)
printf("Element is present in the array\n");
else
printf("Element is not present in the array\n");
}

3) Write a C program to input N numbers and store them in an array. Do a binary search for a
given key and report success or failure.
#include<stdio.h>
main()

{

int a[20],i,j,d,t,x,1=0,low,mid,high;
printf("\nEnter the number of elements\n™);
scanf("%d",&d);

printf("Enter the numbers\n™);
for(i=0;i<d;i++)

scanf("%d",&a[i]);

for(i=0;i<d;i++)

{

for(j=i+1;j<d;j++)

{
if(afi]>a[j])
{
t=ali];
alil=aljl;
afj]=t;
}

}

}

Page 53

Data structures and Applications BCS304

printf("\nThe sorted list :");

for(i=0;i<d;i++)

printf(*%d ",a[i]);

printf("\nEnter the number to be searched\n");
scanf("%d",&x);

low=0;

high=d-1;

while(low<=high)

{
mid=(low+high)/2;
if(x<a[mid])
high=mid-1;

else if(x>a[mid])
low=mid+1;
else

{
if(x==a[mid])
{
I++;
printf(""The item %d is found at location %d\n",x,mid+1);
exit(0);
}
h
}
if(1I==0)
printf(*Item not found\n™);

}

4. Program to illustrate union inside structure
#include <stdio.h>
struct student

{ .
union
{
char name[20];
int roll_no;
b
int marks;
2
int main()
{
struct student stud;

char choice;

printf(*\n you can enter the name or roll number of the student™);
printf(*\n do you want to enter the name?(Y or N:™);
gets(choice);

if(choice == “Y" || choice =="y")

printt(** n enter the name:™);
gets(stud.name);

¥

Page 54

Data structures and Applications BCS304

else

printf(*\n enter the roll number:™);
} scanf(“%d”.&stud.roll_no):

printf(*\n enter the marks:™);

scant(“%d”,&stud.marks):

if(choice == Y || choice == "y")
printf(*\n Name: %s”,stud.name):

else

printf(*\n Roll number: %d”, stud.roll_no);
printf(*“\n Marks: %d”, stud.marks):
return O;

ks

Page 55

Data Structures and Applications (BCS304)
QUEUES

DEFINITION

e “A queue is an ordered list in which insertions (additions, pushes) and deletions
(removals and pops) take place at different ends.”

e The end at which new elements are added is called the rear, and that from which old
elements are deleted is called the front.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted
from the queue. Since the first element inserted into a queue is the first element removed,
queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

e Queues may be represented by one-way lists or linear arrays.

e Queues will be maintained by a linear array QUEUE and two pointer variables:
FRONT-containing the location of the front element of the queue
REAR-containing the location of the rear element of the queue.

e The condition FRONT = NULL will indicate that the queue is empty.

Figure indicates the way elements will be deleted from the queue and the way new elements
will be added to the queue.
e Whenever an element is deleted from the queue, the value of FRONT is increased by 1;
this can be implemented by the assignment FRONT := FRONT + 1

e When an element is added to the queue, the value of REAR is increased by 1; this can
be implemented by the assignment REAR := REAR +1

A AB ABC ABCD ABCDE BCDE
t ot t t
f.r f r f 1 f r f 1 f r
add add add add add delete

f —quene front I =ueue rear

Data Structures and Applications (BCS304)

0 1 2 3 4 0 1 2 3 4
A A |B |C D
fr
add I aaa T
0 1 2 3 4 0 1 2 3 4
A | B A B |C|D|E
f r f r
add add
0 1 2 3 4 0 1 2 3 4
A B |C B |C |D | E
f r f r
add delete
QUEUE OPERATIONS
Implementation of the queue operations as follows.
1. Queue Create
Queue CreateQ(maxQueueSize) ::=
#define MAX_QUEUE_SIZE 100 [* maximum queue size */
typedef struct
{
int key; [* other fields */
} element;
element queue[MAX_QUEUE_SIZE];
int rear = -1;
int front = -1,

2. Boolean ISEmptyQ(queue) ::= front ==rear

3. Boolean IsFullQ(queue) ::=rear == MAX_QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in

addg() and front in delete(). The function calls would be
addq (item); and item =delete();

Data Structures and Applications (BCS304)
1. addq(item)

void addq(element item)

{ /* add an item to the queue */
if (rear == MAX_QUEUE_SIZE-1)
queueFull();
queue [++rear] = item;
}
Program: Add to a queue
2. deleteq()
element deleteq()
{ /* remove element at the front of the queue */
if (front == rear)
return queueEmpty(); /* return an error key */
return queue[++front];
b

Program: Delete from a queue

3. queueFull()
The queueFull function which prints an error message and terminates execution

void queueFull()

{

fprintf(stderr, "Queue is full, cannot add element");
exit(EXIT_FAILURE);

Example: Job scheduling
e Queues are frequently used in creation of a job queue by an operating system. If the
operating system does not use priorities, then the jobs are processed in the order they
enter the system.
e Figure illustrates how an operating system process jobs using a sequential representation for

its queue.

tront |rear | Q[0] Q[1] Q[2] Q[3] Comments
-1 -1 Queue is empty
-1 0 J1 Job 1 1s added
-1 1 J1 J2 Job 2 1s added
-1 2 J1 J2 I3 Job 3 1s added
0 2 J2 I3 Job 1 1s deleted
1 2 I3 Job 2 is deleted

Figure: Insertion and deletion from a sequential queue

Data Structures and Applications (BCS304)

Drawback of Queue

When item enters and deleted from the queue, the queue gradually shifts to the right as shown
in figure.

ot

=

i

)

La
- 4 |

In this above situation, when we try to insert another item, which shows that the queue is full.
This means that the rear index equals to MAX_QUEUE_SIZE -1. But even if the space is
available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

e When an item is deleted from the queue, move the entire queue to the left so that the
first element is again at queue[0] and front is at -1. It should also recalculate rear so
that it is correctly positioned.

e Shifting an array is very time-consuming when there are many elements in queue &
queueFull has worst case complexity of O(MAX_QUEUE_SIZE)

0 1 2 3 4
A C|D|E
-1 0 1 2 4
t t
f r
0 1 2 3 4
B |(C|D|E
-1 0 1 2 3 4
t t
f r

item A is deleted

item B is deleted

Data Structures and Applications (BCS304)

Method 2:

Circular Queue

Itis “The queue which wrap around the end of the array.” The array positions are arranged
in a circle.

In this convention the variable front is changed. front variable points one position
counterclockwise from the location of the front element in the queue. The convention
for rear is unchanged.

CIRCULAR QUEUES

Itis “The queue which wrap around the end of the array.” The array positions are arranged
in a circle as shown in figure.

In this convention the variable front is changed. front variable points one position
counterclockwise from the location of the front element in the queue. The convention
for rear is unchanged.

redr
rear rear l

l
Sy AN N
Rt W

front front
(a) Initial (b) Addition (c) Deletion

Implementation of Circular Queue Operations

When the array is viewed as a circle, each array position has a next and a previous position.
The position next to MAX-QUEUE-SIZE -1 is 0, and the position that precedes 0 is
MAX-QUEUE-SIZE -1.

When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at position

0.

In circular queue, the variables front and rear are moved from their current position to the
next position in clockwise direction. This may be done using code

if (rear == MAX_QUEUE_SIZE-1)
rear = 0;
else rear++;

Data Structures and Applications (BCS304)

Addition & Deletion

To add an element, increment rear one position clockwise and insert at the new position.
Here the MAX_QUEUE_SIZE is 8 and if all 8 elements are added into queue and that
can be represented in below figure (a).

To delete an element, increment front one position clockwise. The element A is deleted
from queue and if we perform 6 deletions from the queue of Figure (b) in this fashion,
then queue becomes empty and that front =rear.

If the element 1 is added into the queue as in figure (c), then rear needs to increment

by 1 and the value of rear is 8. Since queue is circular, the next position should be 0
instead of 8.

This can be done by using the modulus operator, which computes remainders.

(rear +1) % MAX_QUEUE_SIZE
7 3
N

front T? rear
rear rear
(a) (b) (c)
void addg(element item)
{ /* add an item to the queue */
rear = (rear +1) % MAX_QUEUE_SIZE;
if (front == rear)
queueFull(); [* print error and exit */
queue [rear] = item;
¥
Program: Add to a circular queue
element deleteq()
{ [* remove front element from the queue */
element item;
if (front == rear)
return queueEmpty(); [* return an error key */

}

front = (front+1)% MAX_QUEUE_SIZE;
return queue[front];

Program: Delete from a circular queue

Data Structures and Applications (BCS304)

When queue becomes empty, then front =rear. When the queue becomes full and
front =rear. It is difficult to distinguish between an empty and a full queue.

e To avoid the resulting confusion, increase the capacity of a queue just before it
becomes full.

CIRCULAR QUEUES USING DYNAMIC ARRAYS

e A dynamically allocated array is used to hold the queue elements. Let capacity be the
number of positions in the array queue.

e To add an element to a full queue, first increase the size of this array using a function
realloc. As with dynamically allocated stacks, array doubling is used.

Consider the full queue of figure (a). This figure shows a queue with seven elements in an
array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

AR
B‘.aq 01 I [31 Bl [4 [581 [6] [7]

T C|D |E F G Al B

front= 5 front= 3 rear = 4
rear =4

(a) A full circular quene (b) Flattened view of circular full queue

Figure (c) shows the array after array doubling by relloc
[01 111 [21 [3B1 [41 [51 [61 [71 [8] [591 [10] [11] [12] [13] [14] [15]

C|D |E F G A | B

front= 5 rear = 4
(c) After array doubling

To get a proper circular queue configuration, slide the elements in the right segment (i.e.,
elements A and B) to the right end of the array as in figure (d)

0] (11 21 (31 4 [51 (6] [71 (81 [9] [10] [11] [12] [13] [14] [15]
C|D |E F G A|B

front= 13 rear = 4

(d After shifting right segment

Data Structures and Applications (BCS304)

To obtain the configuration as shown in figure (e), follow the steps
1) Create a new array newQueue of twice the capacity.

2) Copy the second segment (i.e., the elements queue [front +1] through queue
[capacity-1]) to positions in newQueue beginning at 0.

3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions in
newQueue beginning at capacity — front — 1.

0] M1 a1 [(31 [4 [51 [6] [71 [8] [51 [10] [11] [12] [13] [14] [15]
A|B C|D |E F G

front= 15 rear =6
(e) Alternative configuration

Below program gives the code to add to a circular queue using a dynamically allocated array.

void addg(element item)
{ /* add an item to the queue
rear = (rear +1) % capacity;
if(front == rear)
queueFull(); /* double capacity */
queue[rear] = item;

Below program obtains the configuration of figure (e) and gives the code for queueFull. The
function copy (a,b,c) copies elements from locations a through b-1 to locations beginning at c.

void queueFull()
{ /* allocate an array with twice the capacity */
element *newQueue;
MALLOC (newQueue, 2 * capacity * sizeof(* queue));
[* copy from queue to newQueue */

int start = (front +) % capacity;
if (start <2) /* no wrap around */
copy(queue+start, queue+start+capacity-1,newQueue);
else
{ /* queue wrap around */
copy(queue, queue+capacity, newQueue);
copy(queue, queuetrear+1, newQueue+capacity-start);

Data Structures and Applications (BCS304)

/* switch to newQueue*/
front = 2*capacity — 1,
rear = capacity — 2;
capacity * =2;
free(queue);

queue= newQueue;

¥

Program: queueFull

DEQUEUES OR DEQUE
A deque (double ended queue) is a linear list in which elements can be added or removed at
either end but not in the middle.

Representation
e Deque is maintained by a circular array DEQUE with pointers LEFT and RIGHT, which
point to the two ends of the deque.

e Figure shows deque with 4 elements maintained in an array with N = 8 memory
locations.

e The condition LEFT = NULL will be used to indicate that a deque is empty.

DEQUE
AAA | BBB| CCC | DDD
1 2 3 4 5 6 7 8

LEFT: 4 RIGHT: 7

There are two variations of a deque
1. Input-restricted deque is a deque which allows insertions at only one end of the list
but allows deletions at both ends of the list
2. Qutput-restricted deque is a deque which allows deletions at only one end of the list
but allows insertions at both ends of the list.

Data Structures and Applications (BCS304)

PRIORITY QUEUES

A priority queue is a collection of elements such that each element has been assigned a priority
and such that the order in which elements are deleted and processed comes from the following
rules:
(1) An element of higher priority is processed before any element of lower priority.
(2) Two elements with the same priority are processed according to the order in which they
were added to the queue.

A prototype of a priority queue is a timesharing system: programs of high priority are processed
first, and programs with the same priority form a standard queue.

Representation of a Priority Queue

1. One-Way List Representation of a Priority Queue

One way to maintain a priority queue in memory is by means of a one-way list, as follows:
1. Each node in the list will contain three items of information: an information field INFO,
a priority number PRN and a link number LINK.
2. A node X precedes a node Y in the list
a. When X has higher priority than Y
b. When both have the same priority but X was added to the list before Y. This means
that the order in the one-way list corresponds to the order of the priority queue.

Example:
e Below Figure shows the way the priority queue may appear in memory using linear arrays

INFO, PRN and LINK with 7 elements.

e The diagram does not tell us whether BBB was added to the list before or after DDD. On
the other hand, the diagram does tell us that BBB was inserted before CCC, because BBB
and CCC have the same priority number and BBB appears before CCC in the list.

START [H\)

(‘» AAA[1]e}—[BBB[2] e} —>[ccc[2] e} —{DDD[4] e}~

C. e (et} — Eselel

Data Structures and Applications (BCS304)

INFO PRN LINK
1 BBB 2 6
START = 2 7
3 DDD 4 4
|
4 EEE 4 9
AVAIL | 2
L» 5 AAA 1 1
6 CCC 2 =3
7 10
8 GGG 5 0
9 FFF 4 8
10 i1
11 | e
ﬂi |
12 | 0

The main property of the one-way list representation of a priority queue is that the element in
the queue that should be processed first always appears at the beginning of the one-way list.
Accordingly, itis a very simple matter to delete and process an element from our priority
queue.

Algorithm to deletes and processes the first element in a priority gqueue

Algorithm: This algorithm deletes and processes the first element in a priority queue which
appears in memory as a one-way list.

1. SetITEM:= INFO[START] [This saves the data in the first node.]

2. Delete first node from the list.

3. Process ITEM.

4. Exit.

Algorithm to add an element to priority queue
Adding an element to priority queue is much more complicated than deleting an element from

the queue, because we need to find the correct place to insert the element.

Algorithm: This algorithm adds an ITEM with priority number N to a priority queue which is
maintained in memory as a one-way list.
1. Traverse the one-way list until finding a node X whose priority number exceeds N. Insert
ITEM in front of node X.
2. If no such node is found, insert ITEM as the last element of the list.

Data Structures and Applications (BCS304)

The main difficulty in the algorithm comes from the fact that ITEM is inserted before node X. This
means that, while traversing the list, one must also keep track of the address of the node preceding
the node being accessed.

Example:
Consider the priority queue in Fig (a). Suppose an item XXX with priority number 2 is to be

inserted into the queue. We traverse the list, comparing priority numbers.

START [0?[>

" R [EEBIEL - (EeElal) oI}

Q»[EEE|4]|e}—>{FFF[4] o] —{GGa]5]

Fig (a)

START [IeSl gxxxlzéo-.

~{AAA] 1] «}—[BBB] 1] «}—~[ccC2] «}*>[DDD[4] »-

|
|

|

Fig(b)

~ EEE | 4| —>|FFF | 4| e-——{GGG| 5| >
] L —— l

Observe that DDD is the first element in the list whose priority number exceeds that of XXX.
Hence XXX is inserted in the list in front of DDD, as pictured in Fig(b).

Observe that XXX comes after BBB and CCC, which have the same priority as XXX. Suppose
now that an element is to be deleted from the queue. It will be AAA, the first element in the
List. Assuming no other insertions, the next element to be deleted will be BBB, then CCC, then
XXX, and so on.

Data Structures and Applications (BCS304)

Array Representation of a Priority Queue

e Another way to maintain a priority queue in memory is to use a separate queue for each
level of priority (or for each priority number).

e Each such queue will appear in its own circular array and must have its own pair of
pointers, FRONT and REA R.

e If each queue is allocated the same amount of space, a two-dimensional array QUEUE
can be used instead of the linear arrays.

4 5 1 1 4 | BFF DDD EEE |
5I 4 4 SL GGG

Observe that FRONT[K] and REAR[K] contain, respectively, the front and rear elements of
row K of QUEUE, the row that maintains the queue of elements with priority number K.

The following are outlines or algorithms for deleting and inserting elements in a priority
queue

Algorithm: This algorithm deletes and processes the first element in a priority queue
maintained by a two-dimensional array QUEUE.
1. [Find the first non-empty queue.]
Find the smallest K such that FRONT[K] # NULL.
2. Delete and process the front element in row K of QUEUE.
3. Exit.

Algorithm: This algorithm adds an ITEM with priority number M to a priority queue
maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear element in row M of QUEUE.
2. Exit.

Data Structures and Applications (BCS304)

MULTIPLE STACKS AND QUEUES

In multiple stacks, we examine only sequential mappings of stacks into an array. The array
is one dimensional which is memory[MEMORY _SIZE]. Assume n stacks are needed, and
then divide the available memory into n segments. The array is divided in proportion if the
expected sizes of the various stacks are known. Otherwise, divide the memory into equal
segments.

Assume that i refers to the stack number of one of the n stacks. To establish this stack, create
indices for both the bottom and top positions of this stack. boundary[i] points to the
position immediately to the left of the bottom element of stack i, top[i] points to the top
element. Stack i is empty iff boundary[i]=top[i].

The declarations are:

#define MEMORY _SIZE 100 I* size of memory */
#define MAX_STACKS 10 /* max number of stacks plus 1 */
element memory[MEMORY _SIZE]; /* global memory declaration */

int top [MAX_STACKS];
int boundary [MAX_STACKS] ;
int n; /*number of stacks entered by the user */

Todivide the array into roughly equal segments

top[0] = boundary[0] =-1;
for (j= 1;j<n; j++)
top[j] = boundary[j] = (MEMORY _SIZE /n) *j;
boundary[n] = MEMORY _SIZE - 1,

0 [m/n] 2 [m/n] m-1
Tbuum’aﬁ}'[ﬂ] boundary[1] bawndary[n]
top[0] top(1]

All stacks are empty and divided into roughly equal segments

Figure: Initial configuration for n stacks in memory [m].

In the figure, n is the number of stacks entered by the user, n < MAX_STACKS, and
m =MEMORY_SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it is full.
A boundary for the last stack is needed, so set boundary [n] to MEMORY _SIZE-1.

Data Structures and Applications (BCS304)

Implementation of the add operation

void push(int i, element item)
{ /* add an item to the ith stack */
if (top[i] == boundary[i+l])
stackFull(i);
memory[++top[i]] = item;
}
Program: Add an item to the ith stack

Implementation of the delete operation

element pop(int i)
{ /* remove top element from the ith stack */
if (top[i] == boundary[i])
return stackEmpty(i);
return memory|[top[i]--];

}

Program: Delete an item from the ith stack

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of
memory, not that the entire memory is full. But still there may be a lot of unused space between
other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull , which determines if there is any free
space in memory. If there is space available, it should shift the stacks so that space is allocated to
the full stack.

‘. y -~ G " ‘ . l .
BI01 1101 BI1T f[1] BT tli] ti+1] tlil bli+1]l bln)
bli+l] bli+2]

b boundary , t=top

B N N . -

Method to design stackFull

Data Structures and Applications (BCS304)

e Determine the least, j, i <j <n, such that there is free space between stacks j and j+1. That
IS, top[j] < boundary[j+I]. If there is a j, then move stacks i+l,i+2, .., j one position to the
right (treating memory[O] as leftmost and memory[MEMORY_SIZE - 1] as rightmost). This
creates a space between stacks iand i+1.

e If there is no j as in (1), then look to the left of stack i. Find the largest j such that 0 <j
<i and there is space between stacks j and j+ 1 ie, top[j] < boundary[j+I]. If there is a
J, then move stacks j+l, j+2, ..., i one space to the left. This also creates space between

stacks i and i+1.

e If there is no j satisfying either condition (1) or condition (2), then all MEMORY_SIZE
spaces of memory are utilized and there is no free space. In this case stackFull terminates

with an error message.

DATA STURUCTURES AND APPLICATIONS (BCS304)

LINKED LISTS

TOPICS

MODULE - 2:

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;
Garbage Collection.

Singly Linked list, SLL operations: Traversing, Searching, Insertion, and Deletion, Lists
and Chains, Representing Chains in C, Circular linked lists, and header linked lists, Linked
Stacks and Queues, Polynomials.

MODULE - 3:

Additional List operations, Doubly Linked lists, Sparse matrix representation.

LINKED LISTS In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues etc.). The basic linked list
can be used without modification in many programs. However, some applications require enhancements
to the linked list design. These enhancements fall into three broad categories and yield variations on
linked lists that can be used
The disadvantages of arrays are:

e The size of the array is fixed. Most often this size is specified at compile time. This makes the
programmers to allocate arrays, which seems "large enough" than required.

e Inserting new elements at the front is potentially expensive because existing elements need to be
shifted over to make room.

e Generally array's allocates the memory for all its elements in one block whereas linked lists use an
entirely different strategy. Linked lists allocate memory for each element separately and only when

necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code will depend

on the following functions:
e malloc() is a system function which allocates a block of memory in the "heap™ and returns a pointer
to the new block. The prototype of malloc() and other heap functions are in stdlib.h. malloc() returns
NULL if it cannot fulfill the request. It is defined by: void *malloc (number_of bytes) Since a void *

is returned the C standard states that this pointer can be converted to mple, any type.

DATA STURUCTURES AND APPLICATIONS (BCS304)

e For ex: char *cp; cp = (char *) malloc (100); Attempts to get 100 bytes and assigns the starting
address to cp. We can also use the sizeof() function to specify the number of bytes. For example, int

*ip; ip = (int *) malloc (100*sizeof(int));

o free() is the opposite of malloc(), which de-allocates memory. The argument to free() is a pointer to
a block of memory in the heap — a pointer which was obtained by a malloc() function. The syntax
is: free (ptr); The advantage of free() is simply memory management when we no longer need a
block.

1.1. LINKED LIST CONCEPTS

A linked list is a non-sequential collection of data items. It is a dynamic data structure. For every data
item in a linked list, there is an associated pointer that would give the memory location of the next data
item in the linked list. The data items in the linked list are not in consecutive memory locations. They
may be anywhere, but the accessing of these data items is easier as each data item contains the address

of the next data item.

| DATA | LINK |

Figure 1: Representation of node

head
T IEHC S N C S W
data next

Figure 2: Example of Linked list

Advantages of linked lists: Linked lists have many advantages. Some of the very important advantages

are:

e Linked lists are dynamic data structures. i.e., they can grow or shrink during the execution of a
program.

e Linked lists have efficient memory utilization. Here, memory is not pre-allocated. Memory is
allocated whenever it is required and it is de-allocated (removed) when it is no longer needed.

e Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data
item at a specified position and deletion of the data item from the given position.

e Many complex applications can be easily carried out with linked lists.

DATA STURUCTURES AND APPLICATIONS (BCS304)

Disadvantages of linked lists:

e |t consumes more space because every node requires a additional pointer to store address of the next
node.

e Searching a particular element in list is difficult and also time consuming.

Comparison between array and linked list:

1. Arrays are stored in contiguous 1. Linked lists are not stored in

location. contiguous location.

2_Fixed 1n size. 2. Dynamic in size.

3. Memory 1s allocated at compile ttme. 3. Memory 1s allocated at run time.

4. Uses less memory than linked lists. 4. Uses more memory because 1t stores
both data and the address of next node.

5. Elements can be accessed easily. 5. Element accessing requires the

traversal of whole linked list.

6. Insertion and deletion operation takes 6. Insertion and deletion operation 1s
time. faster.

1.2. TYPES OF LINKED LISTS
Basically we can put linked lists into the following four items:
1. Single Linked List.
2. Double Linked List.
3. Circular Linked List.
4. Circular Double Linked List.

e Asingle linked list is one in which all nodes are linked together in some sequential manner. Hence,
it is also called as linear linked list.

e A double linked list is one in which all nodes are linked together by multiple links which helps in
accessing both the successor node (next node) and predecessor node (previous node) from any
arbitrary node within the list. Therefore each node in a double linked list has two link fields
(pointers) to point to the left node (previous) and the right node (next). This helps to traverse in
forward direction and backward direction.

e A circular linked list is one, which has no beginning and no end. A single linked list can be made a
circular linked list by simply storing address of the very first node in the link field of the last node.

e A circular double linked list is one, which has both the successor pointer and predecessor pointer in
the circular manner.

DATA STURUCTURES AND APPLICATIONS (BCS304)

1.3. SINGLE LINKED LIST:
Singly linked lists are the basic type of linked lists where each node has exactly one pointer field.
A singly linked list is comprised of zero/ more number of nodes when the number of nodes is
zero , the list is empty otherwise if the linked list is non-empty, the list is pictorially represented as 1
node links to 2" node and 2™ node links to 3™ node and so on. the last node has zero link whose value
of address is set to NULL.

REPRESENTING SLL IN C LANGUAGE / MEMORY ALLOCATION
The following features are used to represent SLL. Use the following 3 steps to create a SLL.

1. Define node’s structure

To define a node, self-referential structures are used
2. Create a new node

malloc() or MALLOC macro is used to allocate memory for the defined structures nodes
of the size needed for structure node considered.
3. Removal of nodes

At any point if the allocated nodes are not in use, they are removed by free().
Example: To create a linked list of words following the above steps follow the steps given below.
1. Defining a node

Using self-referential structures nodes are created. for a list of words , in every node the data field
should store words, so define datatype accordingly.

typedef struct listnode *listpointer;

typedef struct

char data[4];
listpointer link;
HistNode;
This definition will result into a node by name listNode containing char data field of size 4 and a
field by name link , which is a pointer variable of type listpointer , where listpointer is a pointer to whole
structure.

Data

listpointer-> link listNode

e Here, firstis a variable of type pointer i.e. listpointer, initially making it as NULL and hence , a
new list is created by name first and it is empty,

DATA STURUCTURES AND APPLICATIONS (BCS304)

e To create a new node in list, malloc() function is used.

first = malloc(sizeof(*first));
3. To assign the value to the fields of the node. Here, the operator © is used, which is referred as the
structure member operator.

strepy(first->data,”BAT”);

first->link=NULL;
These statements are represented as below:

first->Data first->link

first©® B A T \0 NULL

Here, B =first->data[0];
A=first->data[1];

T =first->data[2];

\O =first->data[3];
NULL=first @ link;

GARBAGE COLLECTION

e When the memory is allocated to the linked lists, a special list is maintained which consists of
unused memory cells. This list, which has its own pointer, is called the list of available space/ the
free storage list or the free pool.

e Thus, the memory is allocated from free pool.

e When node is deleted from a list or a entire list is deleted from a program, the memory space has to
be inserted into free storage list, so that it will be reusable.

e The operating system of a computer may periodically collect all the deleted space onto the free-
storage list. Any technique which does this collection is called garbage collection.

e Garbage collection usually takes place in 2 steps:

1. The computer runs through all list, tagging those cells which are currently in use and then the
computer runs through the memory, collecting all untagged space onto the free — storage list.

2. the garbage collection may take place when there is only some minimum amount of space or
no space at all left in the free-storage list or when the CPU is idle and has time to do the
collection

The garbage collection is invisible to the programmer.

DATA STURUCTURES AND APPLICATIONS (BCS304)

LINKED LIST OPERATIONS
The following operations are performed on the linked list
1. INSERTION

Insertion operation is used to insert new node to the list created. This operation is performed
depending on many scenarios of linked lists like
e If the linked list is empty, then new node after insertion becomes the first node.

e |f the list already contains nodes the new node is attached either at front end of the list or at the last
end.

e If the insertion is based on the data element/position, then search the list to find the location and then
insert the new node.

NOTE: same conditions are checked for deleting a node from the list as well.

\ 4

CAT

A 4

BAT

A 4

EAT

FAT|

\ 4
=
st

\ \O

temp /
BAT |’ newnode

Figure 4: Insertion Operation
Here, if we need to insert the data item GAT between FAT and HAT, the following steps are
followed.
e Getanode temp

e Set the data field to GAT
e Set the link field of temp to point to the node after FAT, which contains HAT
e Set FAT link field to temp

In figure, if we need to delete FAT, then find the element that immediately precedes the element to be
deleted.
EX :- Here, identify EAT.

e Set that element link to the position of GAT i.e. EAT link should point to GAT.

e Use free() to delete FAT node.

Function to create a two-node SLL
listpointer create2()
{
listpointer first,second;
first = malloc(sizeof(*first));
second = malloc(sizeof(*second));
first@data=10;
second©@data=20;
first®link=second;
second®@link=NULL;
return first;

DATA STURUCTURES AND APPLICATIONS (BCS304)

¥

C function to insert new node with data value 50 into the SLL by name first after the node X.
void insert(listpointer *first, listpointer X)

{
listpointer temp;
temp=malloc(sizeof(*temp));
temp->data = 50;
if(*first)
{
temp-> link = x->link;
x->link = temp;
}
else
{
temp-> link = NULL;
*first=temp;
}
}
from main function, call this function as insert(*first , x);
>0 Node to be inserted

temp

e Ifitis empty, then will be the first node in SLL first.

first-> | 50 | \o

e S0, here we are passing the address of first, the second argument is the X.

A 4
~
o

\0

\ 4

10 20 40

50 !
temp

Insert at front of the SLL, insert at end of SLL and Insert at mid of the SLL
Refer PPT

DATA STURUCTURES AND APPLICATIONS (BCS304)

2. LIST DELETION

Example deletes X from the list first , where trail is the preceding node of X.
void delete(listpointer *first, listpointer trail, listpointer X)

{
if(trail)
trail->link = x->link;
else
*first = (*first) ->link;
free(x);
}

From main function call this function as below:-

delete (&first, NULL, first);
OR
delete (&first, y, y->link);
e Anynode is deleted from a linked list by another function delete.

e Assuming that we have 3 pointers, first which points to the start of the list, x points to the node
that we wish to delete, &trail points to the node that precedes x node

A 4

20 | \O

A 4

first-> 10 A1 50 20 \0 first-> 50

e In this example, the node x , which has to be deleted is the first node itself. so, after deleting that
node, resultant linked list should be like , next figure. so, we must change the value of first to

point to node with data -50.
y

first-> 10 —++ 50

A\ 4

v

50 | \O

20 \0 first-> 10

DATA STURUCTURES AND APPLICATIONS (BCS304)

e In above example, deletion corresponds to the function call, delete (&first, y, y->link); where, y
is the trail node for the deleting node X, which is y->link, i.e, the next node after y. so deleting

node containing data 20 is performed and y->link set to NULL.

Deletion at front of SLL, Deletion at End of SLL, Deletion at Mid of List

Refer PPT

3. TRAVESING/PRINTING THE LIST
To print the data fields of the nodes in a list. First print the contents of first’s data field. Then,

replace first with the address in its link field. So, continue printing out the data field and moving to the
next node until end of the list is reached.

void printlist (listpointer first)

{

printf(“\n The list contains”);
for(; first ; first->link)
printf(“%4d”, first->data);
}

3. SEARCHING
e Searching operation performs the process of finding the node containing the desired value in
linked list.
e Searching starts from the first node of the linked list, so that the complete linked list can be
searched to find the element. if found search is successful, else unsuccessful.

DATA STURUCTURES AND APPLICATIONS (BCS304)

void search(listpointer first, int key)

{
int found = 0;
while(first!=NULL && found == 0)

if(first->datal=key)
first=first->next;
else
found = =1;

ks

DOUBLY LINKED LISTS
e Doubly linked list contains the node which contains the following fields: data field and two link
fields, one linking in forward direction and other linking in backward direction.

e figure below shows the DLL

10 B:' 20 ’f‘ j 30
Prev Data Next Prev Data Next Prev Data Next
Figure 5: DLL

e Insingular linked list, it is possible to traverse in only one direction (forward) in the linked list.

e If we are pointing to a specific node say p, then we can move only in the direction of the links.

e To find a node before p, i.e. preceding node p is difficult unless we start from beginning to reach
its previous node.

e Same problem exists, when delete or insertion operations are done on any arbitrarily node in
SLL.

e These problems can be overcome using DLL, as they have both direction links, from any node p,

where we can find next node/ preceding node easily.

C Representation of DLL
A node in a doubly linked list has at least three fields, a left link field (llink), a data field(data), and a

right link field(rlink).

typedef struct node *nodepointer;
typedef struct
{

nodepointer llink;

element data;

DATA STURUCTURES AND APPLICATIONS (BCS304)

nodepointer rlink;
}node;

if ptr points to a node in a DLL, then ptr=ptr->llink->rlink= ptr->rlink->llink;

Operations performed on DLL
1. Insert

Insertion into a doubly linked list is fairly easy. Assume there are two nodes, node and newnode, node

may be either a header node or an interior node in a list. The function dinsert performs the insertion
operation in constant time.

It inserts new node to the right of the node.
void dinsert (nodepointer node,nodepointer newnode)

{
newnode->1link=node;
node->rlink=newnode;
}
node new node
O 10 o 20 N 30 ™ 40 O
* -~ — ——— -—— *
2. Deletion

Deletion from a doubly linked list is equally easy. The function ddelete deletes the node deleted from
the list pointed to by node.

To accomplish this deletion, we only need to change the link fields of the nodes that precede
(deleted—llink—rlink) and follow (deleted—rlink—1link) the node we want to delete.

It deleted the node from the list pointed to by node.
void delete(nodepointer node,nodepointer deleted)

{
if(node == deleted)
printf(“\n deletion of header node is not permitted”);
else
{
deleted->llink->rlink=deleted->rlink;
deleted->rlink->llink=deleted->llink;
free(deleted);
}
}
deleted
- ———+‘\ r — - T 4
@ 10 « 1, <] 30 p 40 @
7 N

Figure 7: Deletion in DLL

DATA STURUCTURES AND APPLICATIONS (BCS304)

CIRCULAR LINKED LISTS
A linked list whose last node points back to the first node instead of containing a null pointer is

called circular list.

1. Circular singly linked list

T = =T T T

start l

Figure 8: CSLL
In a singly linked circular list, the pointer field of the last node stores the address of the starting node In

the list. Hence it is easy to traverse the list given the address of any node in the list.

2. Circular doubly linked list

A doubly linked list whose last node rlink points to first node and first node llink points to last node,

making it is a circular called as circular DLL.

: 1
start ? 10 &b—» (20| =& |30
Figure 9: CDLL

To insert a new node into circular DLL at the end
void dinsert(nodepointer node,nodepointer newnode)

{
newnode->llink=node;
newnode->rlink=node->rlink;
node->rlink->llink=newnode;
node->rlink=newnode;
}
+ node newnode —J
start —|: —" ‘—P‘
Figure 10: Insertion in CDLL
Advantages of CLL

e Linked list made as circular can connect to the first node easily.
e Insertion/deletion operations can be performed quickly.

e Accessing previous node of any node X, can be achieved from X®@end of the list and end to that
particular node.

e Circular linked list even can be adapted for DLL, which are doubly linked CLL.

DATA STURUCTURES AND APPLICATIONS (BCS304)
HEADER LINKED LIST

A header linked list is a linked list which always contains a special node called the header node
at the beginning of the list. It is an extra node kept at the front of a list. Such a node does not represent
an item in the list. The information portion might be unused.

This header node allows us to perform operations more easily and also differentiaties the
nodes,first/last especially when the list is circular.The header node may contain some useful about
linked list such as number of nodes in the list , address of last node/ some specific distinguishing
information . the address of starting node is refereed by headerpointer.

There are two types of header list
1. Grounded header list: is a header list where the last node contains the null pointer.

2. Circular header list: is a header list where the last node points back to the header node.

%—4 ESEEESSE

start Grounded header node

B pimEianpiye

—

Circular header node

Figure 11: Grounded and Circular header Linked List

Observe that the list pointer START always points to the header node.
e |f START—LINK = NULL indicates that a grounded header list is empty
e If START—LINK = START indicates that a circular header list is empty.
The first node in a header list is the node following the header node, and the location of the first node is
START—LINK, not START, as with ordinary linked lists.
Below algorithm, which uses a pointer variable PTR to traverse a circular header list
1. Begins with PTR = START—LINK (not PTR = START)
2. Ends when PTR = START (not PTR = NULL).

The two properties of circular header lists:
1. The null pointer is not used, and hence all pointers contain valid addresses.
2. Every (ordinary) node has a predecessor, so the first node may not require a special case.

DATA STURUCTURES AND APPLICATIONS (BCS304)

Linked Stacks and Queues:-

e To represent several queues and stacks sequentially, linked list is the efficient way.

e The linked stack and linked queue are pictorially shown below:

top

[’LDHTA LINK

[
l DATA LINK

!
[[

{o) Linked Stack {b) Linked Queuse

front rear

Figure 12: (a) Linked Stack and (b) Linked queue

DATA STURUCTURES AND APPLICATIONS (BCS304)

e The directions of arrows in both stack queue representation help us to easily understand the
operations i.e insertion and deletion of nodes. i.e in stack, push/pop operation performed from ht
etop of the stack.

e In Figure (b) above, in linked queue, node is easily inserted and deleted using rear and front
respectively.

e (declarations to represent ‘n’, number of stacks in memory simultaneously, where n<=
MAX_STACKS.

typedef struct

{
int key;
}Element;
typedef struct stack * stackPointer;
typedef struct

{

Element data;
stackPointer link;
}stack;
stackPointer top[MAX_STACKS];
e The initial condition for the stack is top[i]=NULL, 0<i<=MAX_STACKS.

e Boundary condition is top[i]=NULL if the ith stack is empty.

Operations on Mulitple stacks (Linked stack):-

1) PUSH:-

e The push function creates a new node by name temp & places item in the data field & top in the link
field. The variable top is then changed to point to temp.

void push(int i, Element item)

{
stackPointer temp;
temp = malloc(sizeof(*temp));
temp->data = item;
temp->link = tep[i];
top[i] = temp;
}
e The above C function is to add item to the ith stack.
2) POP:-
Element pop(int i)
{
stackPointer temp = top[i];
Element item;
if(temp)
return stackEmpty();

item = temp->data;
top[i] = temp->link;
free(temp);
return item;

DATA STURUCTURES AND APPLICATIONS (BCS304)
e The above C function is used to delete top element from ith stack.

LINKED QUEUES:-
e Torepresent ‘m’ queues simultaneously, declarations are as follows:- where m<=MAX_QUEUES.
#define MAX_QUEUES 10

typedef struct queue *queuePointer;
typedef struct

Element data;
queuePointer link;
}queue;
queuePointer frontfMAX_QUEUES], rearf MAX_QUEUES];
e Ininitial condition for the queue, front[i] = NULL, 0<=i<MAX_QUEUES and the boundary is
front[i] = NULL iff the ith queue is empty.
Operations of Linked queue:-
1) Insert:- add an item to the rear end of a linked queue.
void addq(i, item)
{ queuePointer temp;
temp = malloc(sizeof(*temp));
temp->data = item;
temp->link = NULL;
if(front[i])
rear[i]->link = temp;
else
front[i] = temp;
rear[i] = temp;

Function addq is more complex than push because we must check for an empty queue. If the
queue is empty, then change front to point to the new node; otherwise change rear's link field to
point to the new node. In either case, we then change rear to point to the new node.

2) Delete:- Deletes an item from the front of a linked queue.

Element deleteq(int 1)
{
queuePointer temp = front[i];
Element item;
if(temp)
return queueEmpty();
item = temp->dtaa;
front[i] = temp->link;
free(temp);
return item;

Function deleteq is similar to pop since nodes are removing that is currently at the start of
the list. Typical function calls would be addq (i, item); and item = deleteq (i);

DATA STURUCTURES AND APPLICATIONS (BCS304)

APPLICATIONS OF LINKED LISTS
1) Polynomial Addition:-

e For adding 2 polynomials, the following terms are compared and checked starting at the nodes
pointed to by a & b.

o If the exponents are equal — add 2 coefficients and create new term for the result.
Move a & b to point to next nodes.

o If the exponent of the term in a is less than the exponent of current item in b, then,
= Create a duplicate term b.

= Attach this term to the result called c.
= Advance the pointer to the next term only in b.

o If the exponent of the term in a is greater then the exponent of curret item in b, then,
= Create a duplicate term a.
= Attach this term to the result, called c.
= Advance the pointer to next term only in a.
Polynomial is represented as:-
AX) = am X T+ . +ax@
where, ai are non zero co- efficients and the ci are non negative integer exponents such that cm-1 > Cm-2
>...>C1>Co>=0.

C Declaration:-
typedef struct polyNode *polyPointer;
typedef struct
{
int coef;
int expon;
polyPointer link;
}polyNode;
polyPointer a, b;
polyNodes looks as:-

| coef [expon | link |

a= 3xM+2x%+1, b = 8xM-3x+10x°
a 3|14] |—[2]8] —
b 8141310 |

Figure 13: Representaion of a & b polynomials.

DATA STURUCTURES AND APPLICATIONS (BCS304)

C Function for polynomial addition is given below:-
polyPointer padd(polyPointer a, polyPointer b)
{ /* return a polynomial which is the sum of a & b */
polyPointer c, rear, temp;
int sum;
MALLOC(rear, sizeof(*rear));
c=rear;
while(a && b)
switch(COMPARE (a->expon, b->expon))
{
case -1:/* a->expon < b->expon */
attach(b->coef, b->expon, & rear);
b=b->link;
break;
case 0: /*a->expon == b->expon */
sum = a->coef + b->coef;

if(sum)
attach(sum, a->expon, & rear);
a=a->link;
b=b->kink;
break;
case 1: /* a -> expon > b->expon */
attach(a->coef, a->expon, & rear);
a=a->link;
}
[* copy rest of the list a and then list b */
for(;a;a->link)
attach(a->coef, a->expon, & rear);
for(;b;b->link)
attach(b->coef, b->expon, & rear);
rear->link = NULL;
/* delete extra initial node */
temp =c;
c=c->link;
free(temp);
return c;

e The above function uses streaming process, that moves along the 2 polynomials, either copying
terms directly / adding them to the result.

e Thus, while loop has 3 cases, depending on whether next pair of elements are =, < or>.

e To create a new node and append it to the end of c, the above addition function uses attach().

DATA STURUCTURES AND APPLICATIONS (BCS304)

void attach(float coefficient, int exponent, polyPointer *ptr)
{ /* create a new node with coef = coefficient & expon = exponent, attach is to the node pointed to
by ptr. ptr is updated to point to this new nodes */

polyPointer temp;

MALLOC(temp, sizeof(*temp));

temp->coef = coefficient;

temp->expon = exponent;

(*ptr)->link = temp;

*ptr = temp;

¥

Erasing Polynomials:-

e While using polynomials for different computations, temporary nodes which are having actually
waste data can be erased.
e Example:- For performing e(x) = a(x) * b(x) + d(x);
e Main function is as below:-
polyPointer a,b,d,e;
a=readPoly();
b=readPoly();
d=readPoly();
temp=pmult(a,b);
e=padd(temp,d);
printPoly(e);

e Here, temp is a node, which need to be erased. So, the following function is used to erasenodes.
void erase(polyPointer *ptr)
{
polyPointer temp;
while(*ptr)

temp="*ptr;
*ptr=(*ptr)->link;
free(temp);

DATA STURUCTURES AND APPLICATIONS (BCS304)

Circular list representation of polynomials:-

In a linked structure, the link of the last node points to the first node in the list, it is called as circular
list.
Nodes of a polynomial can be freed efficiently if circular list representation is used.

v

3 14

A 4

N
oo
A 4
[
o

last

Figure 14: Circular representation of 3x*+2x8+1
Free nodes that is no longer in use can be reused by maintaining our own list of nodes that have been
freed.
When we need a new node, freed nodes list is examined, if it is not empty, then use those nodes. If
not, use malloc() to create a new node.
getNode() & retNode() functions are used to use a node and free the node as malloc() and free().

polyPointer getNode(void)

{

polyPointer node;

if(avail)
{
node=avail;
avail=avail->link;
}
else

MALLOC(node, sizeof(*node));
return node;

void retNode(polyPointer node)

{

[*return a node to the available list */
node->link=avail;
avail = node;

DATA STURUCTURES AND APPLICATIONS (BCS304)

Erasing Circular list:-

e We can erase circular list in a fixed amount of time independent of the number of nodes in the list
using cerase() function

void cerase(polyPointer *ptr)

{
polyPointer temp;
if(*ptr)
temp=(*ptr)->link;
(*ptr)->link = avalil,
avail = temp;
*ptr = NULL,;
}

Circular lists with header nodes:-
e Inorder to handle the zero polynomial, each polynomial with a header node is introduced i.e. each
polynomial zero / non-zero contains 1 additional node.

e The expon & coef fields of this node are irrelavant.

Figure 15: Zero Polynomial

— — 3 14 —»| 2 8 1 0

Figure 16: Polynomial 3x4+2x8+1
polyPointer cpadd(polyPointer a, polyPointer b)
{
polyPointer startA, c, lastC;
int sum, done=FALSE;
startA=a;
a=a->link;
b=b->link;
c=getNode();
c->expon =-1, lastC=c;
do
{
switch(COMPARE ((a->expon, b->expon))
{
case -1: attach(b->coef, b->expon, &lastC);
b=b->link;
break;
case 0: if(startA == a)
done = TRUE;
else
{
sum=a->coef+b->coef;
if(sum)

DATA STURUCTURES AND APPLICATIONS (BCS304)

attach(sum, a->expon, &lastC);

a=a->link;
b=b->link;
}
break;
case 1: attach(a->coef, a->expon, lastC);
a=a->link;
}
Jwhile(!done);
lastC->link=c;
return c;

ks

SPARSE MATRIX:-

Sparse Matrix is a matrix with more number of zero enteries than non-zero enteries.
Each non-zero term is represented by a node with 3 fields:- row, column and value.
Linked list representation for sparse matrix are more efficient than array representation.

In this represenation, each column of a sparse matrix is represented as a circularly linked list with a
header node.

Similarly, representation is used for each row of the sparse matirx.

Each node has a tag field, which distinguish between header nodes and entry nodes. Each header
node has 3 additional fields:- down, right & next.

o down field to link into a column list.
o right field to link into a row list.
o next field links the header nodes together.
Each element entry node has 3 fields in addition to the tag field:- row, col, down, right value.

o down field to link to next non-zero term in the same column.
o right field to link to next non-zero term in the same row.
Thus, if ajj #0, there is a node into tag field = entry, value =aj;, row=i & cal=j.

C declarations to represent sparse matrix using likked list.
#define MAX_SIZE 50
typedef Enum {head,entry} tagfield;
typedef struct matrixNode *matrixpointer;
typedef struct
t
int row;
int col;
int value;
} entryNode;
typedef struct
{
matrix pointer down;
matrix pointer right;
tag field tag;
union

DATA STURUCTURES AND APPLICATIONS (BCS304)

{

matrix pointer next;
entry nodes entry;
u;
}matrix Node;
matrix pointer hnode[MAX_SIZE];
The figure shows linked representation of sparse matrix for the following sparse matrix shown

below:-
000060
040000
400800
000004
007000
11 H1 H2 H3 Ha H5 HE
5' Iﬁ —e o == - - —-
- > »| - »| - -
H1 *
1] s5l6
r ane;!
¥ H2 Y
2] 2[4
G -
- I
¥ H3 Y Y
L anE;
Y s Y
a[6]2
C ankEy
¥ H5 Y
51317
C o TRy

Figure 17:-Linked representation of the sparse matrix

Sparse Matrix Operations:- Input, Output & Erase.

1. Sparse Matrix Input:-

e The first operation is of reading in a sparse matrix and obtaining it’s linked representation. The
first input line consists of the number of rows, number of columns and the number of non zero

DATA STURUCTURES AND APPLICATIONS (BCS304)

terms. This line is followed by numTerms, lines of input, each of which is of the form:- row, col,

value.
e The sample input for sparse matrix is given below:-
next row col | value
down | right down right
(@) Header Node (b) Element Node

Figure 18:- Node Structure for sparse Matrices

e The function mread first sets up the header nodes & then sets up each row list while
simultaneously building the column lists. The next field of a header node,i,is initially used to

keep track of the last node in column i.
matrixPointer mread(void)

{
/* read in a matrix & sets up its linked representation */
int num Rows,numCols,numTerms,numHead,i;
int row,col,value,currentRow;
matrix pointer temp,last,node;
printf(“enter the number of rows,columns,non-zero terms”);
scanf(“%d%d%d”,&numRows,&numCols,&numTerms);
numHeads=(numcols>numRows) ? numCols:numRows;
node=newNode();
node©@tag=entry;
node®@u .entry.row=numRows;
node®@u.entry.col=numcCaols;
if('"numHeads)
node©@right=node;

else
[*initialize the header nodes8/
{
for(i=0;i<numHeads;i++)

{
temp=newNode;
hdnode[i]=temp;
hdnode[i]->tag = head;
hdnode[i]->right = temp;
hdnode[i]->u.next = temp;

}

currentRow = 0;
last = hdnode[0];
for(i=0;i<numTerms;i++)
{
printf(“Enter row, column & value”);
scanf(“%d %d %d”, & row, & col, & value);
if(row>currentRow)
{
last->right = hdnode[currentRow];
currentRow = row;
last=hdnode[row];

DATA STURUCTURES AND APPLICATIONS (BCS304)

}
MALLOC((temp, sizeof(*temp));

temp->tag = entry;
temp->u.entry.row=row;
temp->u.entry.col=col,
temp->u.entry.value=value;
last->right = temp;
hdnode[col]->u.next->down= temp;
hdnode[col]->u.next = temp;
}
last->right = hdnode[currentRow];
for(i=0;i<numCols;i++)
hdnode[i]->u.next->down = hdnode[i];
hdnode[numHeads-1]->u.next=node;
node->right = hdnode[0];
}

return node;

}

2. Sparse Matrix Output:-
To print out the contents of a sparse matrix in a form. The function mwrite is written as below:
void mwrite(matrixPointer node)
{
[*print out the matrix in row major form */
inti;
matrixPointer temp, head=node->right;
printf(‘“numRows=%d, numCols=%d\n”, node->u.entry.row, node->u.entry.col);
for(i=0;i<node->u.entry.row;i++)
{
for(temp=head->right;temp!=head;temp=temp->right)
printf(“%5d %5d %5d\n”, temp->u.entry.row, temp->u.entry.col,
temp->u.entry.value);
head=head->u.next;

}

DATASTRUCTURES AND APPLICATIONS BCS304

Module 4
GRAPHS

Topics:

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Traversal
methods: Breadth First Search and Depth First Search.

Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.

INTRODUCTION: GRAPH
* A graph G consists of 2 sets, V and E.
V is a finite, on empty set of vertices.
E is a set of pairs of vertices, these pairs are called edges. V(G) and E(G) represents the set of
vertices and edges respectively of graph G (Figure 1).
o @

o w K
1

3 @Q ®
G2 @

compkte graph moonplete graph (3

V(G)={0,1,23} E(G)=1(0,1),0,2)00,3),(1,2),(1 3L(2,3) }
V(G)=10,1,23456} E(G)={(0,1)/0,2),1,3),(14),25L(26)}
V(G)={0,1,2} E(G)={<0,1><1 0= <] 2=}

Figure 1: Three sample graphs

There are two types of graphs

1. Undirected graph

2. Directed graph

* In an undirected graph, the pair of vertices representing any edge is unordered. Thus, the pairs (u,v)
and (v,u) represent the same edge.

* In a directed graph, each edge is represented by a directed pair <u,v>; u is the tail and v is the head of
the edge. Therefore, <u,v> and <v,u> represent two different edges.

Following are the restrictions on graphs

1) A graph may have an edge from a vertex v back to itself. Such edges are known as self loops (Fig 2).
2) A graph may not have multiple occurrences of the same edge. If we remove this restriction, a data
object referred to as multigraph.

DATASTRUCTURES AND APPLICATIONS BCS304

feedback 1 e o /)
ioops 4 multigiaph 2D

Figure 6.3: Examples of graph like structures
« Maximum number of edges in any n-vertex, undirected graph is n(n-1)/2.
* Maximum number of edges in any n-vertex, directed graph is n(n-1).

TERMINOLOGIES USED IN A GRAPH
* Subgraph of G is a graph G' such that V(G') belongs V(G) and E(G") belongs E(G) (Figure 3).

é@%@

(i) (iii)
(2)Some ofthe subgq:-haf G

(i) (i (ml (N]
{b) Some of the subgaph of G
Figure 3:Some subgraphs

* A path from vertex u to vertex v in graph G is a sequence of vertices u,il,i2 . . . ik, v such that
(wil),(i1,i2) (ik, v) are edges in E(G).
* A simple path is a path in which all vertices except possibly the first and last are distinct.
* A cycle is a simple path in which the first and last vertices are the same.
* A undirected graph is said to be connected iff for every pair of distinct vertices u & v in V(QG) there is

a path from u to v in G.

* A connected component H of an undirected graph is a maximal connected subgraph. (Figure 4).
H 0 H 4

6
7
G .
Figure 4:A graph with two connected components

* A tree is a connected acyclic(i.e. has no cycles) graph.
* A directed graph G is said to be strongly connected iff for every pair of distinct vertices u and v in
V(G),there is a directed path from u to v and also from v to u (Figure 5). The graph G3 is not
strongly connected as there is no path from vertex2 to 1. A strongly connected component is a
maximal subgraph that is strongly connected. G3 has two strongly connected components.

DATASTRUCTURES AND APPLICATIONS BCS304

Figure 5: Strongly connected components of G3
* The degree of a vertex is the number of edges incident to that vertex. (Degree of vertex 0 is 3)
* In a directed graph G, in-degree of a vertex v defined as the number of edges for which v is the head.
The out-degree is defined as the number of edges for which v is the tail. (Vertex 1 of G3 has in-degree 1,
out-degree 2 and degree 3).

GRAPH REPRESENTATIONS

* Three commonly used representations are:

1) Adjacency matrices,

2) Adjacency lists and

3) Adjacency Multilists

1) Adjacency Matrix

* Let G=(V,E) be a graph with n vertices, n>=1.

* The adjacency matrix of G is a two-dimensional n*n array(say a) with the property that a[i][j]=1 iff
the edge (i,)) is in E(G). a[i][j]=0 if there is no such edge in G (Figure 6).

011000 0 0]
10010000
10010000
01100000
00000100
00001010
000O0O01 01
0000001 0
G

* The space needed to represent a graph using its édj acency matrix is n? bits.

+ About half this space can be saved in the case of undirected graphs by storing only the upper or lower
triangle of the matrix. Figure 6 Adjacency matrices

2) Adjacency Lists

* The n rows of the adjacency matrix are represented as n chains.

* There is one chain for each vertex in G.

* The data field of a chain node stores the index of an adjacent vertex (Figure 6.8).

* For an undirected graph with n vertices and e edges, this representation requires an array of size n and
2e chain nodes.

DATASTRUCTURES AND APPLICATIONS BCS304

1
)

(=
A

(9
=S

(’R\

AA
(»0)
&)

N
g

0 EB-IE-EEEN @
| B-AE-OE-EN 0 BN
2 B-IE-IEEN | EIEN
3 B-IE-IE-2N 2 B
3 G
=S FIE S FIN
& 2 OGN
®) 3 L= =120
4 L= s
5 BEE-EN
7 LA
G,

Figure 7 adjacency lists.
3) Adjacency Multilist
An edge in an undirected graph is represented by two nodes in adjacency list representation.
Adjacency Multilists are lists in which nodes may be shared among several lists.
(an edge is shared by two different paths). For each edge there will be exactly one node, but this node
will be in two lists(i,e, the adjacency lists for each of the two nodes to which it is incident). The node
structure is

m vertex1 vertex2 link1 link2

Where m is single bit field to indicate whether the edge has been examined or not.

DATASTRUCTURES AND APPLICATIONS BCS304

adjLists

e——]
o [e e S
l , &
21
131

The lists are vertex O: NO — N1 —» N2
vertex 1: NO — N3 —- N4
vertex 2: N1 — N3 — N5
vertex 3: N2 —- N4 —- NS5

-12: Adjacency multilists for G, of Figure 6.2(a)

GRAPH ABSTRACT DATA TYPE

structure Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each edge is a
pair of vertices
functions: for all graph Graph, v, v1 and v2 < Vertices
Graph Create()::=return an empty graph
Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.
Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2
Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it
are removed
Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (vi, v2) is
removed
Boolean IsEmpty(graph)::= if (graph==empty graph)
return TRUE
else
return FALSE
List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

ADT OF GRAPH

DATASTRUCTURES AND APPLICATIONS BCS304

ELEMENTARY GRAPH OPERATIONS/ GRAPH TRAVERSALS
1. Depth First Search (DFS)
2. Breadth First Search (BFS)

DFS and BFS are common methods of graph traversal, which is the process of visiting every
vertex of a graph. Stacks and queues are two additional concepts used in the DFS and BFS algorithms.

A stack is a type of data storage in which only the last element added to the stack can be
retrieved. It is like a stack of plates where only the top plate can be taken from the stack.

The three stacks operations are:
e Push — put an element on the stack
e Peek — look at the top element on the stack, but do not remove it
e Pop — take the top element off the stack.

A queue is a type of data storage in which the elements are accessed in the order they were added. It is
like a cafeteria line where the person at the front of the line is next.

The two queues operations are:
e Enqueue — add an element to the end of the queue.
e Dequeue — remove an element from the start of the queue.

Depth First Search (DFS) (It is similar to a preorder tree traversal)

e We begin the search by visiting the start vertex, v.

e Next, we select an unvisited vertex, w, from v’s adjacency list and carry out a depth first search on w.
e We preserve our current position in v’s adjacency list by placing it on a stack.

e Eventually our search reaches a vertex, u, that has no unvisited vertices on its adjacency list.

e At this point, we remove a vertex from the stack and continue processing its adjacency list.

e Previously visited vertices are discarded; unvisited vertices are visited and places on the stack.

The recursive implementation of dfs is presented below. This function uses a global array,

visitedMAX VERTICES], that is initialized to FALSE.

When we visit a vertex, I, we change visited[i] to TRUE. The declarations are:

DATASTRUCTURES AND APPLICATIONS BCS304

gdefine §
#$#def1NE€ :: 1) El CES]
521 C = =
'.Jn,,)‘l'.',i dfs (1Nt V)) bed S x /
{ / *x "_in?L’ 1 5= -
1 1 ¢ 1 22X r
isited] ’
printf (" SIEAA N
£ S(misace =22)
‘.‘_iff (w—Vver ’
}
Program 6.1: Depth first search
Pl
| @)
3 4 S5 6
(a)
adjLists
(0] 1 -+ 1 » ' - 2 0
[‘ T = () - ‘; " _‘ ()
2] T = 0 = 5 6 o
(3] -+ 1 { 7 0
4] 1 1 - 7 0
(5] - 2 ol 7 0
1} { 2 W
(7] 4 3 4 | 5
3 "1 ’ D 4T 0
(b)
\

F. . 3
18ure 6.16: Graph G and its adjacency lists

DATASTRUCTURES AND APPLICATIONS BCS304

Easy understanding steps with diagram

Note: This is just for understanding you have to write above dfs function and
adjacency list
DFS will visit the child vertices before visiting siblings using this algorithm:
e Mark the starting node of the graph as visited and push it onto the stack
e While the stack is not empty
e Peck at top node on the stack
e Ifthere is an unvisited child of that node Mark the child as visited and push the child node
onto the stack
e Else Pop the top node off the stack.

DATASTRUCTURES AND APPLICATIONS

Step Traversal
S
1 A B c
D
S
2. A B c
\ / top—+
D
8
3. A B c
\ / top-+

Stack

S

Stack

A

Stack

Description

Initialize the stack.

Mark S as visited and put it onto
the stack. Explore any unvisited
adjacent node from S. We have
three nodes and we can pick any
of them. For this example, we
shall take the node in an
alphabetical order.

Mark A as visited and put it onto
the stack. Explore any unvisited
adjacent node from A.

Both Sand D are adjacent

to A but we are concerned for
unvisited nodes only.

BbOCd304

o o .
NN N

DATASTRUCTURES AND APPLICATIONS

top+» D

top+» B

Stack

top+» D

Stack

top-—+|

> 0 0

Stack

Visit D and mark it as visited and
put onto the stack. Here, we
have B and C nodes, which are
adjacent to D and both are
unvisited. However, we shall
again choose in an alphabetical
order.

We choose B, mark it as visited
and put onto the stack.

Here B does not have any
unvisited adjacent node. So, we
pop B from the stack.

We check the stack top for return
to the previous node and check if
it has any unvisited nodes. Here,
we find D to be on the top of the
stack.

Only unvisited adjacent node is
from D is C now. So we visit C,

mark it as visited and put it onto

the stack.

BbOCd304

DATASTRUCTURES AND APPLICATIONS BCS304

As C does not have any unvisited adjacent node so we keep popping the stack until we find a node that
has an unvisited adjacent node. In this case, there's none and we keep popping until the stack is empty.

Breadth First Search (BFS) (It is similar to a level order tree traversal)
e BFS starts at vertex v and marks it as visited. It then visit each of the vertices on v’s adjacency list.

e When we have visited all the vertices on v’s adjacency list, we visit all the unvisited vertices that are
adjacent to the first vertex on v’s adjacency list.

e As we visit each vertex we place the vertex in a queue.

e When we have exhausted an adjacency list, we remove a vertex from the queue and proceed by
examining each of the vertices on its adjacency list.

e Unvisited vertices are visited and then placed on the queue; visited vertices are ignored.
e We have finished the search when the queue is empty.

The bfs function is implemented below:

breadth first traversal of
the global array visited is init ali:
operations are similar to those
hapter 4, front and rear a

Ilm(in_—b;l’(:. Lnter w:

W,
I[."‘A'\ - rear (5O : . ' .
0) rear NULL; /* init lallze queue */
E_W‘P-:‘LI ("uob(j""',) ;
Visited(v] = TRUE;

addqg (v) ;

’
while (front) {
deleteq() ;
r(_; \ = Aiph [«
r‘ (w graph(v]; w; w = w—1link)
2 ¢ Ivvyd @ tnld!
1L (!visited (W=vertex])

{
U"~~05 ng ., .
Printf ("$5d", wovertex):
addqg (w—->ve 232) o
ldq (w—overtex) ;
V1isit q—“(i [W—Vval t 1 ¢
= | Vertex PRI .
\ J IRUI

.y

Program 6.2; Breadth firs search of a graph g

DATASTRUCTURES AND APPLICATIONS

- =

Th iti
€ queue definition and the function protot

ct u 4
ty¥pedef struct ? s *queuepolnter;

ypes used by bfs are:

int vVertex;
queuePointer link:
queuep i) reus) ‘
ePointer fro
Vold addq(int), s sndany
Fhtideleteni()

-
’

Easy understanding steps with diagram

Note: This is just for understanding you have to write above bfs function and

adjacency list

BFS will visit the sibling vertices before the child vertices using this algorithm:
e Mark the starting node of the graph as visited and enqueue it into the queue.

e While the queue is not empty.

e Dequeue the next node from the queue to become the current node.
e While there is an unvisited child of the current node .

e Mark the child as visited and enqueue the child node into the queue.

Step Traversal Description

Initialize the queue.

Queue

BbOCd304

DATASTRUCTURES AND APPLICATIONS BCS304

We start from visiting S(starting

s . .
/.) \ node), and mark it as visited.
2. A 3 c
? Queue
E We then see an unvisited adjacent
et node from S. In this example, we
/ \ have three nodes but
alphabetically we choose A, mark
3. 2! e & it as visited and enqueue it.
\ / A
9 Queue
E Next, the unvisited adjacent node
& from S is B. We mark it as visited
/ \ and enqueue it.
4. A 8 c
\ / B A
? Queue
" Next, the unvisited adjacent node
S from S is C. We mark it as visited
/ \ and enqueue it.
\
5. A B c
\ ; / || Bl A

Queue

DATASTRUCTURES AND APPLICATIONS BCS304

Now, S is left with no unvisited
adjacent nodes. So, we dequeue

s
/ \ and find A.

6. A B c
_ ‘ / C B
i Queue
: From A we have D as unvisited
~. adjacent node. We mark it as
/ \ visited and enqueue it.
7 A B c
\ / D C B
)

Queue

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep on
dequeuing in order to get all unvisited nodes. When the Queue Gets Emptied, The Program Is Over.

Connected components:
DFS or BFS functions can be used to check if the graph is connected or not.

Spanning Trees:
A spanning tree is any tree that consists solely of edges in G and that includes all the vertices in G.

0 (o ©

© 0

(1 < <z @ 2
G (3

)

(’.».)

Possible spanning trees

Biconnected Components:
An articulation point is a vertex v of G such that the deletion of v, together with all edges incident on v,

produces a graph G’, that has atleast 2 connected components. Ex: 1,3,5 and 7 are the articulation points

in the following graph.
A biconnected graph is a connected graph that has no articulation points.

DATASTRUCTURES AND APPLICATIONS BCS304

o (s @)

@ @ ® &
& C -G | (2 G GG @ff_‘_
[OING a G

Graph Biconnected components

Difference between BFS and DFS

BEFS visit nodes level by level. DES visit nodes of graph depth wise.
We can’t visit a level without visiting it’s It is not necessary to maintain level.
previous level.

To implement BFS we need to use To implement DFS we need to use
Queue. Stack.

BFS is slower and need more memory. DFS is faster and required 1ss memory.

It is used to find Shortest path, testing a It is used for topological sorting, solving
graph for bipartite. puzzles such as maze.

DATASTRUCTURES AND APPLICATIONS BCS304

Module 5
HASHING

Hashing is an effective way to store the elements in some data structure. It allows to reduce the
number of comparisons. Using the hashing technique we can obtain the concept of direct access of stored
record.

The dictionary operations search, insert and delete in arrays, linked list and in BST take O(n) time.
If the tree is balanced it will take O(logn) time.

Hashing enables us to perform the dictionary operations in O(1) expected time.
There are two types of hashing

1. Static Hashing

2. Dynamic hashing

STATIC HASHING

Two important aspects associated with hashing are

1. HASH TABLE
2 HASH FUNCTIONS

HASH TABLE

It is a data structure used for storing and retrieving data very quickly. Inserting data in to this

table is based on key value.

Example: Storing an employee record in the table, Employee ID is used as key.

The hash key is used to search the data in the hash table. The efficient representation of dictionary
can be done using hash table. The dictionary entries in the hash table are filled using hash function.

In static hashing the dictionary pairs are stored in a table, ht, called the hash table is partitioned
into b buckets, ht [0], , ht[b - 1]. A bucket is said to consist of s slots, each slot being large enough to
hold one dictionary pair. Usually s=1, and each bucket can hold exactly one pair.

The address or location of a pair whose key is k is determined by a hash function, h which maps
keys into buckets. Thus, for any key k, h (k) is an integer in the range 0 through b - 1. h (k) is the hash

or home address of k.

Example: Consider the hash table ht with b = 26 buckets and s =2. We have n = = 10 distinct identifiers,
each representing a C library function. The hash function must map each of the possible identifiers on
to one of the numbers, 0-25. We can construct a fairly simple hash function by associating the letters, a-

z, with the numbers, 0-25, respectively, and then defining the hash function, f (x), as the first character

DATASTRUCTURES AND APPLICATIONS BCS304

of x.

Using this scheme, the library functions acos, define, float, exp, char, atan, ceil, floor, clock, and ctime
hast into buckets 0, 3, 5, 4, 2, 0, 2, 5, 2, and 2, respectively. Figure shows the first 8 identifiers entered
in to the hash table.

ll | Slot0 | Siot1
0 | acos atan |
1
"2 | char | ceil
"3 | define
4 | exp
Tg__' float floor |
6 | |
25 | |

th 26 buckets and two slots per bucket

_———/- .
. Hash table W1

The identifiers acos and atan are synonyms, as are float and floor, and ceil and char. The next identifier,

clock, hashes into the bucket ht [2]. Since this bucket is full, we have an overflow.

When no overflows occur, the time required to insert, delete or search using hashing depends only on the time
required to compute the hash function and the time to Search one bucket. Hence, the insert, delete and search

times are independent of n, the number of entries in the dictionary.

The hash function of above example is not well suited for most practical applications because of the very
large number of collisions and resulting overflows that occur. This is because it is not unusual to find dictionaries
in which many of the keys begin with the same letter. Ideally, we would like to choose a hash function that is

both easy to compute and results in very few collisions.

Hashing schemes use a hash function to map keys into hash-table buckets. It is desirable to use a hash function
that is both easy to compute and minimizes number of collisions. Hence, a mechanism to handle overflows is

needed.

DATASTRUCTURES AND APPLICATIONS BCS304

HASH FUNCTIONS

It is a function which is used to map a key into a bucket in the hash table. The integer returned by hash
function is called hash key.

A hash function is a mathematical formula which, when applied to a key, produces an integer which can
be used as an index for the key in the hash table.

DIFFERENT HASH FUNCTIONS

1. Division method

It is the most simple method of hashing an integer x. The home bucket is obtained by using the
modulo(%) operator. This method divides k by D and then uses the remainder as the home bucket for k.
In this case, the hash function can be given as:

h(k) =k mod D
where k is key and D is size of the hash table
Example: Let the keys are 13, 74, 11, 15, 16 and D=10 . The bucket addresses ranges from 0 to D-1 1,e 0 to 9

h(13)=13 % 10 =3 R
h(74) =74 % 10 =4 2
h(11)=11% 10=1 3]13
h(15)=15 % 10 =5 4174
h(16) =16 % 10 =6 >

2

3

9

2. Multiplication Method

The steps involved in the multiplication method are as follows:
Step 1: Choose a constant A such that 0 <A <1.

Step 2: Multiply the key k by A.

Step 3: Extract the fractional part. kA.

Step 4: Multiply the result of Step 3 by the size of hash table (m).
Hence, the hash function can be given as:

h(k) = floor(m *(kA -floor(kA)))
where A= 0.65 i,e 0<A<1 and m is the total number of buckets in the hash table.

DATASTRUCTURES AND APPLICATIONS BCS304

Examplel: Given a hash table of size m=10, map the key 60 to an appropriate location in the hash table.
Solution Assuming A =0.65, Given: m =10, and k =60
h(60) = floor(10* (60 *0.65 — floor(60 *0.65)))
h(60) = floor(10* (39-39))
h(60) = floor(10* 0)
h(60) =0
Example2: Given a hash table of size 1000, map the key 12345 to an appropriate location in the hash table.
Solution Assuming A = 0.618033. Given: m = 1000, and k = 12345
h(k) = floor(m *(kA mod 1))
h(12345) = floor(1000 (12345 *0.618033 mod 1))
h(12345) = floor(1000 (7629.617385 mod 1))
h(12345) = floor(1000 (0.617385))
h(12345) =tloor(617.385)

h(12345) =617

DATASTRUCTURES AND APPLICATIONS BCS304

3. Mid-Square Method

The mid-square method is a hash function which works in two steps:
Step I: Square the value of the key. That is, find k2.

Step 2: Extract the middle r digits of the result obtained in Step 1.

Example 15.3 Calculate the hash value for keys 1234 and 5642 using the mid-square method. The hash
table has 100 memory locations.

Solution Note that the hash table has 100 memory locations whose indices vary from 0 to 99.
This means that only two digits are needed to map the key to a location in the hash table, so r = 2.

After squared choose middle part of the key.

When k = 5642, k* = 31832164, h (5642) = 32, place the key in the bucket 32

If table size is 1000 whose indices vary from 0 to 999

When k = 1234, k? = 1522756, h (1234) = 227, place the key in the bucket 227

4. Folding Method

In this method the key k is partitioned into several parts, all but possibly the last being the same length.
These partitions are then added together to obtain the hash address for k.

There are two ways of carrying out this addition.

In the first, all but the last partition shifted to the right so that the least significant digit of each lines
up with corresponding digit of the last partition. The different partitions are now added together to get h (k).
This method is known as shift folding.

In the second method, folding at the boundaries, the key is folded at the partition boundaries, and
digits falling into the same position are added together to obtain h (k). This is equivalent to reversing every
other partition and then adding.

Example: Suppose that k = 12320324111220, and we partition it into parts that three decimal digits long.
The partitions are P1 =123, P2 =203, P3 =241, P4=112 and P5 = 20.
Using shift folding, we obtain
h(k)=>Pi=P1 +P2+P3 +P4+P5=123 +203 +241 + 112 + 20 =699
when folding at the boundaries is used, we first reverse P2 and P4 to obtain 302 and 211, respectively. Next,

the five partitions are added to obtain h (k) = 123 + 302 + 241 + 211 + 20 =897

DATASTRUCTURES AND APPLICATIONS BCS304

5. Converting Keys to Integers

To use some of the described hash functions, keys need to first be converted to non-negative integers.

we consider only the conversion of strings into non-negative integers.

unsigned int stringToInt (char *key)

{/* simple additive approach to create a natural number
Ithat is within the integer range */
int number = 0;
while (*key)
number += *key++;
return number;

Program 8.1: Converting a string into a non-negative integer

The above program converts each character into a unique integer and sums these unique integers. Since each

character maps to an integer in the range 0 through 255.
OVERFLOW HANDLING

There are two popular ways to handle overflows
1. open addressing
2. chaining

1. OPEN ADDRESSING

we describe four open addressing methods
1. linear probing, which also is known linear open addressing,
2. quadratic probing,
3. rehashing
4

. random probing.

Linear probing

In linear probing, when inserting a new pair whose key is k, we search the hash table buckets in the
order, ht [h (k) +i] % b, 0<i<b-1 where h is the hash function and b is the number of buckets. This search
terminates when we reach the first unfilled bucket and the new pair is inserted into this bucket. In case no such
bucket is found, the hash table is full and it is necessary to increase the table size. Notice that when we resize
the hash table, we must change the hash function as well.

For example, when the division hash function is used, the divisor equals the number of buckets. This
change in the hash function potentially changes the home bucket for each key in the hash table. So, all dictionary

entries need to be remapped into the new larger table.

DATASTRUCTURES AND APPLICATIONS BCS304

Example: Assume we have a 15-bucket table with one slot per bucket. As our data we use the words for, do,
while, If, else, and function. Figure 8.2 shows the hash value for each word using the simplified scheme or
program 8.1 and the division hash function. Inserting the first five words into the table poses no problem since
they have different hash addresses, However, the last 1dentifier, function, hashes to the same bucket as if. Using

a circular rotation, the next available bucket is at ht[0], which is where we place function (Figure 8.3).

- - — — - I -
Identifier | Additive x | Hash
L J{ Transformation - |

for 102 + 111 + 114 327 5

- do - 100 + 111 211 3

" while 119 + 104 + 105 + 108 + 101 | 537 4
i 105 + 102 207 12
else 101 + 108 + 115 + 101 425 9
function | 102+ 117 + 110+ 99 + 116 + 105 + 111 + 110 | 870 12

Figure 8.2: Additive transformation

[0] function
[1]
(2] for
[3] do
4] while
[S]
[6]
(71
(8]
9] else
[10]
[11]
[12] if

Figure 8.3: Hash table with linear probing (13 buckets, one slot per bucket)

DATASTRUCTURES AND APPLICATIONS
BCS304

When s = 1 and linear ing i
o probing is used t
the pair with key k proceeds as follows: 0 handle overflows, a hash table search for

(1) Compute h (k).

(2) Examine the hash table buckets i
) ; n the order A
ht[(h (k) + j) % b] until one of the followingrhagi)};f]?], AlhG) + D %6 "

(a) The bucket ht[(h (k) + j .
J) % b] has :
desired pair has been found.] a pair whose key is k; in this case, the

(b) htlh (k) + j11is empty; k is not in the table.
We return to the starting position At [k (k)]; the table is full and k is not in
the table.

(c)

Program 8.3 is the resulting search function. This function assumes that the hash table At
siores pointers to dictionary pairs. The data type of a dictionary pair is element and data

of this type has two componenets ifem and key.

{/* search the linear probing hash table ht (each bucket has
exactly one slot) for k, if a pair with key k is found,
return a pointer toO this pair; otherwise, return NULL * /

int homeBucket, currentBucket;

homeBucket = hi(k); .
for (currentBucket — homeBucket; ht[currentBucket]

&& ht[currentBucket]—>key = k;) |
(currentBucket + 1) % b;

currentBucket =
/* treat the table as circular */

if (currentBucket == homeBuket) |
return NULL; /* back to start point */

}
if (ht[currentBucket]~>key == k)
return ht[currentBUCket];

} return NULL;

RS —
Program 8.3: Linear probing

DATASTRUCTURES AND APPLICATIONS BCS304

When linear probing is used to resolve overflows, keys tend to cluster together and adjacent clusters
tend to coalesce, thus increasing the search time.
For example, suppose we enter the C built-in functions aces, atoi, char, define, exp, ceil, cos, float, atol,
floor, and ctime into a 26-bucket hash table in that order. For illustrative purposes, we assume that the hash
function uses the first character in each function name.

Figure 8.4 shows the bucket number, the identifier contained in the bucket, and the number of
comparisons required to insert the identifier. Notice that before we can insert atol, we must examine ht [0], .

, ht[8], a total 9 nine comparisons. The average number of buckets examined would be 41/11 = 3.72 per

identifier.

Disadvantage of liner probing: keys tend to cluster together and adjacent clusters tend to coalesce, thus

increasing the search time.

T
Lbucket l T baékets searched | \
0 ‘ ago§ ‘ 1 -
[1 | atoi 2) ‘
2 | char | B I
3 defme 1|
| djep | |
- 5 | ceil | 4
6 | cos 5 |
r 7 | float | 3 7}
8 | atol 9 4
9| foor s
,V 10 | ctime ' _ 9 ”ﬂi |
— 1 |
25 ! |

Figure 8.4: Hash table with linear probing (26 buckets, one slot per bucket)

Some improvement in the growth of clusters and hence in the average number of comparisons needed for

searching can be obtained by quadratic probing.

DATASTRUCTURES AND APPLICATIONS BCS304

Quadratic probing

In quadratic probing, a quadratic function of i is used as the increment. In particular, the search is carried
out by examining buckets h (k), (h (k) +i?) % b, and (h (k) —i?) % b for 1<(b- 1)/2. When b is a prime number

of the form 4j + 3, for j an integer, the quadratic search described above examines every bucket in the table.
Figure 8.5 lists some primes of the form 4j + 3.

T T]

iT)finrie_wL j ”%Pgne L J
|

3 ol 4 |10
“ 7 “ 11 59 | 14 |
o 2| 27 | 31
1o |4 L) e
|23 s s03 | 125
| 31 |7 1019 | 254

i
Sure 8.5 Some primes of the form 4j + 3

An alternative method to retard the growth of clusters is to use a series of functions hl, h2,....., hm. This

method is known as Rehashing. Buckets hi(k) , | <i<m are examined in that order.

Yet another alternative is, random probing, a pseudo-random number generator is used to obtain a
random sequence R(i), 1 <1 <b where R(1), R(2),....., R(b-1) is a permutation of [1, 2....... , b-1].

Random hashing is easy to analyze but because of the expense of random number generation it is not often
used.

2. Chaining

Linear probing and its variations perform poorly because the search for a key involves comparison with
keys that have different hash values.

Many of the comparisons can be saved if we maintain lists of keys, one list per bucket, each list
containing all the synonyms for that bucket. If this is done, a search involves computing the hash address h(k)

and examining only those keys in the list for h(k). We typically use an array ht [0:b-1] with ht[i] pointing to
the first node of the chain for bucket i.

Program 8.4 gives the search algorithm for chained hash tables.

DATASTRUCTURES AND APPLICATIONS BCS304

element * search (int k)

{/* search the chained hash table ht for k, if a pair with
this key is found, return a pointer to this pair; .
otherwise, return NULL.
nodePointer current;
int homeBucket = h(k);

/* search the chain ht [homeBucket] */

for (current = ht [homeBucket]; current;
| current = current—link)
if (current—data.key == k) return ¤t—data;

return NULL;

Program 8.4: Chain search

Figure 8.6 shows the chained hash table corresponding to the linear table found in figure 8.4. The number
of comparisons needed to search for any of the identifiers is now one each for acos, char, define, exp and
float; two each for atoi, ceil, and float; three each for atol and cos; and four for ctime. The average number

of comparisons is now 21/11 = 1.91.

[0] — acos atoi atol

[1] > NULL

[2] — char ceil cos ctime
[3] — define

[4] — exp

[S] — float floor

[6] = NULL

[25] - NULL

Figure 8.6: Hash chains corresponding to Figure 8.4

To insert a new key, k, into a chain, we must first verify that it is not currently on chain. Following this,
k may be inserted at any position of the chain. Deletion from a chained hash table can be done by removing

the appropriate node from its chain.

DATASTRUCTURES AND APPLICATIONS BCS304

When chaining is used along with a uniform hash function, the expected average number of key
comparisons for a successful search is = 1 + a/2, where a is the loading density n/b (b = number of buckets).
For o = 0.5 this number is 1.25, and for a a = 1 it is 1.5. The corresponding numbers for linear probing are

1.5 and b, the table size.

DYNAMIC HASHING (Extendible hashing)

Motivation for Dynamic Hashing

To ensure good performance, it is necessary to increase the size of a hash table whenever its loading
density exceeds a prespecified threshold. So. for example. if we currently have b buckets in our hash table and
are using the division hash function with divisor D=b, then, when an insert causes the loading density to exceed
the prespecified threshold, we use array doubling to increase the number of buckets to 2b + 1.

At the same time, the hash function divisor changes to 2b +1. This change in divisor requires us to
rebuild the hash table by collecting all dictionary pairs in the original smaller size table and reinserting these
into the new larger table. We cannot simply copy dictionary entries from the smaller table into corresponding
buckets of the bigger table as the home bucket for each entry has potentially changed. For very large dictionaries
that must be accessible on a 24/7 basis, the required rebuild means that dictionary operations must operations
must be suspended for unacceptably long periods while the rebuild is in progress.

Dynamic hashing, which also is known as extendible hashing, aims to reduce the rebuild time by

ensuring that each rebuild changes the home bucket for the entries in only 1 bucket. In other words, although

table doubling increases the total time for a sequence of n dictionary operations by only O(n), the time required
to complete an insert that triggers the doubling is excessive in the context of a large dictionary that is required
to respond quickly on a per operation basis.

The objective of dynamic hashing is to provide acceptable hash table performance on a per operation
basis. We consider two forms of dynamic hashing- one uses a directory and the other does not.

For both forms, we use a hash function h that maps keys into non-negative integers. The range of h is
assumed to be sufficiently large and we use h(k,p) to denote the integer formed by the p least significant bits of
h(k).

For the examples, we use a hash function h(k) that transforms keys into 6-bit non-negative integers. Our
example keys will be two characters each and h transforms letters such as A, B and C into the bit sequence 100,
101, and 110, respectively. Digits 0 through 7 are transformed into their 3-bit representation.

Figure 8.7 shows 8 possible 2 character keys together with the binary representation of h(k) for each.
For our example hash function, h(A0,1) =0, h (A1,3)=1, h(B1,4)=1001=9, and h (C1,6) =110 001 = 49.

DATASTRUCTURES AND APPLICATIONS BCS304

[1. T ”. |
,"__jLM h(k) |
A0 | 100000
Al | 100001
BO | 101 000
' BI ‘ 101 001
' C1 | 110001 |
| 110010 |

@)
N

' C3 ‘ 110011
' C5 | 110101

Figure 8.7: An example hash function

Dynamic Hashing Using Directories

A directory, d, of pointers to buckets is used. The size of the directory depends on the number of bits of
h(k) used to index into the directory. When indexing is done using, h(k, 2), the directory size is 2> = 4; when
h (k, 5) is used, the directory size is 32. The number of bits of h (k) used to index the directory is called the
directory depth.

The size of the directory is 2!, where t is the directory depth and the number of buckets is at most equal
to the directory size. Figure 8.8 (a) shows a dynamic hash table that contains the keys A0, B0, Al, B1, C2,
and C3. This hash table uses a directory whose depth is 2 and uses buckets that have 2 slots each.

DATASTRUCTURES AND APPLICATIONS BCS304

00 i"_ﬂ‘;ﬂ(io:ksg 000 | — ,{on_Bp 0000 —»ﬁAOTBEa
01 | ——=Al, Bl| 001 | - HA] ‘B1| 0001 ——mlAI'ETb
10 [4~fc2 | om0 [f4e ~ | o010 | = {czjc
1 | ~C3 | o1l /#CB | oon _7/# ﬂi’fd
100 // 0100 //
o (e oo [e
110 0110 | /'
1 |/ 0111 /
B 1000 | a
1001 | 4 /Bl |
1010 | ¢ -
1011 |d
1100 a‘
1101 |e
1110 | ¢
1111 | d
(a) depth =2 (b) depth = 3 ;('c) depth = 4

Figure 8.8: Dynamic hash tables with directories

Suppose we insert C5 into the hash table of Figure 8.8 (a). Since, h (C5,2) = Since, h (C5,2) = 01 This
gets us to the bucket with Al and BI. This bucket is full and we get a bucket overflow.
To resolve the overflow, we determine the least u such that h(k,u) is not the same for all keys in the overflowed
bucket. In case the least u is greater than the directory depth, we increase the directory depth to this least u
value. This requires us to increase the directory size but not the number of buckets. When the directory size
doubles, the pointers in the original directory are duplicated so that the pointers in each half of the directory
are the same. A quadrupling of the directory size may be handled as two doublings and so on.

For our example, the least u for which h (k, u) is not the same for Al, B1, and C5 is 3. So, the directory
is expanded to have depth 3 and size 8. Following the expansion, d[i] = d[i + 4],0<i<4.

DATASTRUCTURES AND APPLICATIONS BCS304

Following the resizing of the directory, we split the overflowed bucket using h (k,u). In our case, the
overflowed bucket is split using h (k, 3). For Al and B1, h(k, 3)= 001 and for C5, h (k, 3) =101. So, we create
a new bucket with C5 and place a pointer to this bucket in d[101]. Figure 8.8 (b) shows the result.

Notice that each dictionary entry is in the bucket pointed at by the directory position h (k, 3), although,
in some cases the dictionary entry is also pointed at by other buckets. For example, bucket 100 also points to
A0 and BO, even though h (A0,3) =h (B0,3) # 000.

Suppose if we want to insert C1. The pointer in position h (C1,2) = 01 of the directory of Figure 8.8 (a)
gets us to the same bucket as when we were insert. This bucket overflows. The least u for which h(k,u) isn't
the same for Al, Bl and C1 is 4. So, the new directory depth is 4 and its new size is 16. The directory size is
quadrupled and the pointers d [0:3] are replicated 3 times to fill the new directory. When the overflowed
bucket is split, A1 and Cl are placed into a bucket that is pointed at by d[0001] and B1 into a bucket pointed
at by d[1001].

Consider inserting A4 (h (A4) =100 100) into Figure 8.8 (b). Bucket d[100] overflows. The least u is
3, which equals the directory depth. So, the size of the directory is not changed. Using h (k, 3), A0 and BO
hash to 000 while A4 hashes to 100. So, we create a new bucket for A4 and set d [100] to point to this new
bucket.

Directoryless Dynamic Hashing

This method is also known as linear dynamic hashing. In the previous case we use an array, ht, of buckets
with large size. To avoid initializing such a large array, we use two variables q and r, 0<q< 2", to keep track of
the active buckets. At any time, only buckets 0 through 2" +q - 1 are active. Each active bucket is the start of a
chain of buckets. The remaining buckets on a chain are called overflow buckets.

Informally,

r is the number of bits of h (k) used to index into the hash table and

q is the bucket that will split next.

More accurately, buckets 0 through q - 1 as well as buckets 2" through 2" +q - 1 are indexed using h (k, r+ 1)
while the remaining active buckets are indexed using h(k, r). Each dictionary pair is either in an active or an
overflow bucket.

Figure 8.9 (a) shows a directoryless hash table ht with r = 2 and q = 0. The hash function is h(B4) =101
100, and h(B5) = 101 101. The number of active buckets is 4 (indexed 00, 01, 10, and 11). The index of an
active bucket identifies its chain.

Each active bucket has 2 slots and bucket 00 contains B4 and A0Q. There are 4 bucket active chains, each chain
begins at one of the 4 active buckets and comprises only that active bucket (i.e., there are no overflow buckets).

In Figure 8.9 (a), all keys have been mapped into chains using h (k, 2).

DATA STRUCTURES AND APPLICATIONS BCS304
| B 000 m overflow 000 A0
” A0 - | bucket)
= LA
01 BS B5 [— =1 2 ‘C| \
€2 | Cc2 | C2
0 o10| & 010
o o C3
C3
! - orr| | o1
- B4 B4
100 B4 new active 100]
B ' bucket = N
(01 newaclne
CS ' pucket
2.4 = 2

(' J C r 2’ ‘[l > r=
) ’ O (b) l[“ Lr‘ /5'

wsh table

i vos dynamic he
A Figure §.9. Inserting into a directory less dynat

In Figure 8.9 (b), r=2 and q = 1; h (k, 3) has been used for chains 000 and 100 while h (k, 2) has been used for
chains 001, 010, and Chain 001 has an overflow bucket; the capacity of an overflow bucket may or may not be
the same as that of an active bucket.

To search for k, we first compute h (k,r). If h (k,r) < g, then k, if present, is in a chain indexed using h

(k, r+ 1). Otherwise, the chain to examine is given by h (k,r). Program 8.5 gives the algorithm to search a

directoryless dynamic hash table.

if (h(k,r) < q) search the chain that begins at bucket A (k,r +1);
else search the chain that begins at bucket h (k,r);

Program 8.5: Searching a directoryless hash table

To insert C5 table into the table of Figure 8.9 (a), we use the search algorithm of program to determine
whether or not C5 is in the table already. Chain 01 is examined and we verity that C5 is not present. Since
the active bucket for the searched chain is full, we get an overflow. An overflow is handled by activating

bucket 2"+ q; reallocating the entries in the chain q between q and the newly activated bucket (or chain)

2"+ q, and incrementing q by 1.

DATASTRUCTURES AND APPLICATIONS BCS304

The bucket 4 = 100 is activated and the entries in chain 00 (q = 0) are rehashed using r + 1 = 3 bits. B4
hashes to the new bucket 100 and A0 to bucket 000. Now q =1 and r =2. A search for C5 would examine chain
1 and so CS5 is added to this chain using an overflow bucket (see Figure 8.9 (b)).

Let us now insert C1 into the table of Figure 8.9 (b). Since, h (C1,2) =01 = g, chain 01 =1 is examined
by our search algorithm (Program 8.5). The search verifies that C1 is not in the dictionary. Since the active
bucket 01 is full, we get an overflow. we activate bucket 2" +q = 5 = 101 and rehash the keys A1, BS, and C5
that are in chain q. The rehashing is done using 3 bits. Al is hashed into bucket 001 while BS and C5 hash into
bucket 101. q is incremented by 1 and the new key C1 is inserted into bucket 001. Figure 8.9 (c) shows the

result.

OPTIMAL BINARY SEARCH TREES

A binary search tree is one of the most important data structures in computer science. One of
its principal applications is to implement a dictionary, a set of elements with the operations of
searching, insertion, and deletion.

If probabilities of searching for elements of a set are known e.g., from accumulated data about
past searches it is natural to pose a question about an optimal binary search tree for which the
average number of comparisons in a search is the smallest possible.

In many applications the cost of searching is very important. So, it is required that the overall
cost of searching should be as less as possible. And we know that search time of BST
is more than the Balanced Binary Search Tree, as Balanced Binary Search tree has less number
of levels than the BST. And there is one way which can further reduce the cost than the

Balanced BST, which is Optimal Binary Search Tree. Let us understand by following example

Key 20 30 40

Frequencies 2 1 6

As there are 3 different keys, so we can have total 5 various BST by changing order of keys.

The total number of binary search trees with n keys is equal to

| 2n
c(n) = forn =0, c(0)=1,
n+1\n

So following are the various possible BST of the above data. And also the overall cost for
searching for each BST. The cost of computed by multiplying each node’s frequency with the
level of tree (Here we are assuming that the tree starts from level 1) and then add them to

compute the overall cost of BST

(1*2)+ (1*1)+ (1*2)+ (1-6)+ (1*6)+
(2*1)+ (2*2)+ (2*6)+ (2*2)+ (2*1)+
(3*6) =6 3*1) 2 (3*2)
=22 H =17 ((-13 o =14

As itis shown in above figure that 2nd BST is balanced and the 4th BST is not balanced, though
it’s cost is less than the cost of Balanced BST and its cost is the least among all, so it is our

Optimal Binary Search Tree for the given data.

As a general algorithm, this exhaustive-search approach is unrealistic as n increases:
Therefore dynamic programming approach, we will find values of C(i, j) for all smaller

instances of the problem, although we are interested just in C(1, n).

To derive a recurrence underlying a dynamic programming algorithm, we will consider all

possible ways to choose a root ak among the keys ai, . . ., ;. For such a binary search tree , the
root contains key ak, the left subtree Tik"! contains keys ai, . . ., a-1 optimally arranged, and
the right subtree Tik+1 contain s keys ak+1, . . . , aj also optimally arranged.

Optimal \ ' Optimal

BST for \ i BST for

L85 \ 3 Skahs .a

Binary search tree (BST) with root ¢, and two optimal binary search subtrees

TI‘ —1 and 7

If we count tree levels starting with 1 to make the comparison numbers equal the keys’ levels,

the following recurrence relation is obtained:

General formula for calculating the minimum cost is:
C[i,j] = min{c[i, k-1] + c[k,j1} + w(i,j). ifi<j

i<k<=j
= Pi if i=]
=01i>j
° 1 = . Y & n_
1 o [24 ’ goal
| o | - '
L 4 -
/ - » Clejl

- 2,

n+1 0

FIGURE 8.9 lable of the cynamic programming algonthm tor constructing an optimal
binary search tree

The algorithm computes C(1, n)—the average number of comparisons for successful searches
in the optimal binary tree.

ngm le . :k-n& Of‘hmal. g et ﬁoQ e Swarn

\ ol ax a3 aYy

Note '

o ©
._.-—-—-—'\\)

b,qcﬂ:o,o]
2%;,2—3
et ,37
Ciu)‘u
s.t=t efed
C{") 9’3
12,31
Cfg) L\j

C.o
e
"
'S}

ete

<
\
(-]

—

Woy = Weoo + Hi+q = 24843 =8 "

Wi - Wi + P4qs = 3+ 341 -3
Weg = wWead Pigy = tH V1 =2
Wgy = Was + Py +qy = P4+ (41 =

Coy = Woy = 8 So¢ = |\
C@g_;!&)u = % Spo = 2
CQ_B;VOQ_.B';& 493 = 3
Cou = way 2 S3q = 4
'S/____SEEB g-—-t: 2

woz = Wo, + Pat+ o = @) 841 = 2
VG33=,LO|:L+?3+Q,3= w2k I =9,
Wk = W3 A PyAGy = a4 d+1= 2

ey F c2]

éf-"r—y-\z:\ .
{g‘\-o .—_4'

i o T, 1)+ @53§ s

e [o,21 = enLD) %(cio,oj-\— °

n

e 3]

- m"’%}*‘ c-e Rost

|

A4+ 144 = U

- 'LQ'.&—}— Pq#%q -

N P % St A eBo L

—\-Wf‘,'-?-}
eCh2d ~ cT3ul
ct";a& -+ C'.tLy)Lt,B
Cak -
- c -'r <
. il -+ 1 = 14
2. 4+ 0
s'\Q‘P a1l 3-"?:'—1-
Wo ¢ = wWos Put Uy = 44N+ =16
clo,u] = i cles0] + e,y
eloes1) + e —+ Woy
CTOJQ'] -+ C'T,azl*’)
Qfa)gj +C’5:LI“)L\-')
T
- TUD o + 19 ol
_*—”o = 32
19 4+ 3
&35 -+ ©
\
me\mncﬁém o,g thmoﬂ ®Bav %Qum Aable
Rl’o'k S Qow = 2{1& kgﬁ = ‘i{?""

Roy Qﬁ \

Ro\@ | @.s,&_

A

DATA STRUCTURES AND APPLICATIONS BCS304

MODULE-4
TREES

TOPICS:-Terminology, Binary Trees, Properties of Binary trees, Array and linked
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional
Binary tree operations. Threaded binary trees, Binary Search Trees — Definition, Insertion,
Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression.
Text1: Ch5:5.1-5.5,5.7
Text2:Ch7:71-7.9

This chapter discuss about the tree data structure in detail:-

4.1 DEFINITION
Tree is a finite set of one or more nodes such that

1) There is a specially designated node called root.
2) Remaining nodes are partitioned into disjoint sets T1, T2. .. Tn where each of these are
called subtrees of root. (As shown in below figurel)
(Or)
A Tree is a set of nodes that either: is empty or has a designated node, called the root, from
which hierarchically descend zero or more subtrees, which are also trees. If a tree is not empty, the first
node is called the root .The indegreee of root node is zero. With the exception of the root, all the nodes

in the tree must have an indegreee exactly one and the out degree of zero, one, or more.

LEVEL
' A). | |
B (c) Yb) 2
» ’ 3 y /'; v.'
E F) (G) (H) (1) () 3
,'/' - . _
’ KV , (L] 'V-M 4

Figure 1: Sample Tree
A tree consists of a finite set of elements called nodes and a finite set of directed lines called

branches that connect the nodes. The number of branches associated with a node is the degree of the
node. When the branch is directed toward the node, it is indegree branch. When the branch is directed
away from the node it is an outdegree branch.
4.2 TERMINOLOGIES OF TREES

e Node: contains item of information & links to other nodes.

e Root: A node with an indegree zero i.e. a node with no parent is called root; A non-empty tree
has exactly one Root.

DATA STRUCTURES AND APPLICATIONS BCS304

Degree: Number of subtrees of a node. For e.g., degree of A=3; degree of C=1
Degree of a tree is the maximum of the degree of the nodes in the tree.

Degree of given tree=3.
Leaf: Any nodes with an outdegree of zero i.e. a node with no successors or children’s. For e.g.,
K.L,F,G,M, 1]

Internal Node: A node that is not a root or a leaf is known as an internal node. For e.g., B, E, F,
C,H I

Parent and Child: The subtrees of a node A are the children of A. A is the parent of its children
(OR) a node is a parent if it has successor nodes i.e. if it has an outdegree greater than zero.
Conversely, a node with predecessor is a child. For e.g., children of D are H, 1 and J. Parent of D
is A.

Siblings/Brothers/Sisters: Children of same parent are called siblings. For e.g., H, | and J are
siblings.

Ancestor: An ancestor is any node in the path from the root to the node. For e.g., ancestors of M
are A, D and H.

Descendent: A descendent is any node in the path below the parent node i.e. all nodes in the paths
from a given node to a leaf are descendents of that node.

Path: a sequence of nodes in which each node is adjacent to the next one. Every node in the tree
can be reached by following a unique path starting from the root. the length of a path is the
number of edges in the path, or 1 less than the number of nodes in it

Level: the level of a node is its distance from the root. If a node is at level 'I', then its children are
at level 'l+1".

Height or depth of a tree is defined as maximum level of any node in the tree. For e.g., Height of
given tree = 4.

A Sub tree is any connected structure below the root.

A tree is a set of nodes that either: Is empty , or Has a designated node, called the root, from
which hierarchically descend zero or more subtrees, which are also trees.

REPRESENTATION OF TREES

The first is the General Tree organization chart format, which is basically the notation

used to represent in figure 2. This notation is called general tree representation.

DATA STRUCTURES AND APPLICATIONS BCS304

LEVEL
' A 3\ | 1
B C D) 2
E F) (G (5 (1) (3 3
.»/’ T) -
K) (L, M 4

Figure 2: General tree

There are three different user representations for trees.
1) List representation
2) Left-child right-sibling representation
3) Degree-two tree representation (Binary Tree)
1) List representation

This user format is the parenthetical listing. This format is used with algebraic
expressions. When a tree is represented in parenthetical notation, each open parenthesis indicates the
start of a new level, each closing parenthesis completes the current level, and each closing
parenthesis completes the current level and moves up one level in the tree.
Consider the tree shown in the figure 2. Its parenthetical notation is The tree can be drawn as a list:
(A(B(E(K,L),F),C(G),D(H(M),1,2))).
For a tree of degree ‘k’, we can use the node-structure as shown(Fig. 3).

'DATA | CHILD) | cHILD2 | ~ | CHILD#

Figure 3: Node structure with degree k
The information in the root node comes first, followed by a list of subtrees of that node. Each
tree-node can be represented by a memory-node that has fields for data & pointers to children of tree-

node (Figure. 4).

A ——(—-@
T8 36T 3 HTT
CERGERDD]340

tag fields not shown

Figure 4: List Representation of Tree

DATA STRUCTURES AND APPLICATIONS BCS304

Property of general tree: if T is a k-ary tree with n nodes, each having a fixed size as in figure 3, then
n(k-1)+1 of the nk child fields are 0,n>=1.
2) Left child-right sibling representation

Figure 5 shows the node-structure used in left child-right sibling representation.

, data

r———————

leftchild | right sibling

Figure 5 : Left Child-Right Sibling Node

To convert the tree of figure 2 into this representation, every node must note it has at most one
leftmost child and at most one closest right sibling.

For example, the leftmost child of A is B, and the leftmost child of D is H. The closest right
sibling of B is C, and the closest right sibling of H is I. The Left-child field of each node points to its
leftmost child (if any), and right-sibling field points to the closest right sibling (if any). Figure 6 shows
the left child right sibling representation.

(e F G) (w}—1)}—{1)

(D) (w

Figure 6: Left Child Right Sibling Representation.
3) Degree-two tree representation
To obtain the degree two tree representation of a tree, simply rotate the right-sibling pointers in
a left child-right sibling tree clockwise by 45 degrees. This gives the degree two tree displayed in
figure 7, In this representation, it refer to 2 children of a node as left & right children. Left child-right
child trees are also known as binary trees.

_.:;
B
¥ '_-L_
= ¥ e o

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 7: Left Child-Right Child Representation
Figure 8 shows the two additional examples of trees represented as left child-right sibling trees and as

left child-right child trees. Left child-right child trees are also known as binary trees.

B 8 B

tree ety chai-riphn sabving irex binary tree

(3] L § B8 & B

ucc icfit child-ngta wbling oce

Benary tree

Figure 8: Binary trees

4.3 BINARY TREES

A Binary tree is a finite set of elements that is either empty or is partitioned into two disjoint
subsets. The first subset contains a single element called the root of the tree. The other two subsets
are themselves binary trees, called the left and right subtrees of the original tree. A left or right sub
tree can be empty. Each element of a binary tree is called a node of the tree as illustrated in figure 8.

(OR)

A Binary tree is a tree in which no node can have more than two subtrees. The maximum

outdegree for a node is two. In other words, a node can have zero, one or two subtrees. These subtrees

are designated as the left sub tree and right sub tree.

4= A LY
(= (b _) B
&< =5
B> B
CEeCE>
{=) n
e =

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 9: Various binary trees
Consider the below binary tree as an example:

B/A\C
TN~ G
/ N

|
G H

Figure 9 (a): Binary tree
If A is the root of a binary tree and B is the root of its left or right sub tree, then A is said to be
the father of B and B is said to be the left or right son of A and collection of binary shown in figure
9(a).A node that has no sons is called a leaf. Node nl is an ancestor of node n2 (and n2 is a descendant
of n 1) if nl is either the father of n2 or the father of some ancestor of n2. node n2 is a left descendant
of node nl if n2 is either the left son of n1 or a descendant of the left son of n1.A right descendant may

be similarly defined. Two nodes are brothers if they are left and right sons of the same father.

ADT of Binary Tree

DATA STRUCTURES AND APPLICATIONS BCS304

structure Binary_Tree(abbreviated BinTree) is
objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree,
and right Binary_Tree.
functions:
for all bt, bt1, bt2 = BinTree, item element
Bintree Create()::= creates an empty binary tree
Boolean IsEmpty(bt)::= if (bt==empty binary tree)
return TRUE
else
return FALSE
BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is btl, whose
right subtree is bt2, and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt))
return error
else
return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt))
return error
else
return the data in the root node of bt
Bintree Rchild(bt)::= if (IsEmpty(bt))
return error
else
return the right subtree of bt

Differentiate between a binary tree and a tree.
1. There is no tree having zero nodes, but there is an empty binary tree.

2. In abinary tree, we distinguish between the order of the children while in a tree we do not.

TYPES OF BINARY TREE

1) Skewed tree is a tree consisting of only left sub tree or only right sub tree (Figure 10a).

2) Full binary tree is a binary tree of depth k having 2-1 nodes, k>=1 (Figure 11).

3) Complete tree is a binary tree in which every level except possibly last level is completely filled
and all nodes are as far left as possible. A binary tree with n nodes & depth k is complete iff its nodes
correspond to nodes numbered from 1 to n in full binary tree of depth k (Figure 10b).

4) If every non leaf node in a binary tree has nonempty left and right subtrees, the tree is termed a
strictly binary tree. A strictly binary tree with n leaves always contains 2n-1 nodes as illustrated in

figure 12.

DATA STRUCTURES AND APPLICATIONS BCS304

LEVEL
\ /\>) A I
(B) (8" c 2
‘)—- F—< !
{'\C: |\n-:F.":'F G) 3
R !
il : 3=
(P) (H) (1 K
J \
o= : =
=d (b)
(E) 5
\ ’/
(a)
Figure 10(a): skewed tree 10(b).complete binary tree
]
2) [2
{4 "5) 6 7
£ i 9) (10) (1) (12) (13} () (1s)

Figure 11:Full binary tree representation of depth 4 with sequential node numbering

TN
N N
CTN

Figure 12: Strictly binary tree

4.4 PROPERTIES OF BINARY TREES

e The maximum number of nodes on level 'i* of a binary tree is 2 i'l, i>=1.

DATA STRUCTURES AND APPLICATIONS BCS304

(For e.g. maximum number of nodes on level 4=2 *1=23=8).

e The maximum number of nodes in a binary tree of depth 'k" is 21, k>=1.

(For e.g. maximum number of nodes with depth 4=2*-1=16-1=15).

e Relation between number of leaf nodes and degree-2 nodes : For any non-empty binary tree
“T, if ng is the number of leaf nodes and n, the number of nodes of degree 2, thenny=n,+1.

e Afull binary tree of depth k is a binary tree of depth k having 2X-1 nodes, k>=0.

e A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of depth k.

e Minimum number of nodes binary trees: Given a height of the binary tree, H, the minimum
number of nodes in the tree is equal to height of tree.

e Height of Binary Trees: If the given binary tree has N nodes in a binary tree, the maximum
height is given by Hmax=N. If the given binary tree has N nodes in a binary tree, the minimum
Height Is Given By Hmin=Log2n+1

e Level of binary trees: The level of a node in a binary tree is defined as follows. The root has
level 0, and the level of any other node in the tree is one more than the level of its father.

e Depth of binary trees: The depth or Height of a binary tree is the maximum level of any leaf
in the tree. By definition the height of any empty tree is -1. This equals the length of the longest
path from the root to any leaf.

4.5 BINARY TREE REPRESENTATIONS
A binary tree can be represented in two forms, namely:
1) Array Representation

2) Linked Representation

1. ARRAY REPRESENTATION

A one-dimensional array can be used to store nodes of binary tree (Figure 13).

«If a complete binary tree with ‘n’ nodes is represented sequentially, then for any node with index i
(1<=i<=n), we have
1) Parent (i) is at [i/2] if i'=1. If i=1, i is the root and has no parent.
2) Left Child (i) is at 2i , if 2i<=n. If 2i>n, then i has no left child.
3) Right Child (i) is at 2i+1<=n. If 2i+1>n, then i has no right child.

DATA STRUCTURES AND APPLICATIONS BCS304

Consider the tree shown below

ree iree
LEVEL (0] I -
(1 A A
™\ N\ — —_
(A) (A) | 2] B | B
S B =] K
~ Y\ (4) | C D
B (B) (c) 2 o .
‘\/-—) .,r-', ’:r--(‘/ |Sl T_ 717 | 'E
P S o [[F
(D‘, (E) (-F;‘\ ‘\\G_) 3 U = . G
. T ® [D H
7\ [r— —_—
»I) l‘)l [- l
_}i] (\IJ)\ 4 ! { ' l
(b ’ {b) Tree of Figure 5.10(b)
\
5
. o =1
Figure 5,10: Skewed and complete binary trees (a) Tree of Figure 5.10(2)

Figure 13: Array Representation of binary tree
Advantage: For complete binary tree, array representation is ideal, as no space is wasted.
Disadvantage: For skewed tree, less than half the array is utilized. In the worst case, a skewed
tree of depth k will require 2k-1 spaces. Of these, only k will be used.
2. LINKED REPRESENTATION

« Shortcoming of array representation: Insertion and deletion of nodes from middle of a tree
requires movement of potentially many nodes to reflect the change in level number of these nodes.
These problems can be overcome easily through the use of a linked representation (Figure 15).

» Each node has three fields:

1) Left Child,
2) Data and
3) Right Child (Figure 14) and it is defined in C as shown below:
typedef struct node *treePointer;
typedef struct
{
int data;
treePointer leftChild,rightChild;
}node;
Root of tree is stored in the data member 'root’ of Tree. This data member serves as access-pointer to

the tree.

DATA STRUCTURES AND APPLICATIONS BCS304

| Leftchild | data | Right child | @

Left child Right child

Figure 14: Node representation

LEVEL oot root
|
/A\ w.’A\/ I ,‘* — ,._._lkh_
L}_/ N _.&\ _._.AI.O) 3 8
~ o .\'_“ - 1 e My -
(2 | -
(BJ) [’Fj ‘7(.:‘I ’ 1 IBF y 2 Shd B J‘(l—-«
z . ‘,"(\‘\" -, _‘f_ \\’ , v I I '
(o) () (¥) (o)] (Lclo ,[p[\] [o[E]o] [o[F]0o] [0]G]0

V/ bo s .-
(b) _2*1 E|D]

(a) {b)

(1)

Figure 5,10: Skewed and completsbinary res Figure 15: Linked representation of binary tree

4.6 BINARY TREE TRAVERSALS

The order in which the nodes of a linear list are visited in a traversal is clearly from first to last.
However, there is no such "natural” linear order for the nodes of a tree. Thus, different orderings are
used for traversal in different cases.

Let L, V, and R stand for moving left, visiting the node, and moving right. There are six
possible combinations of traversal. LVR, LRV, VLR, VRL, RVL, RLV. Adopt convention that we
traverse left before right, only 3 traversals remain LVR, LRV, VLR and in fact they are inorder,
postorder and preorder approaches are explained in figure 16.

Tree Traversal Approaches

3
Cq O Ny
2 3 1 3 1 Z
Left Right Left Right Left Right
subtree subtree subtree subtree subtree subtree

(a) Preorder traversal (b) Inorder traversal (c) Postorder traversal

Figure 16: Tree traversal methods

DATA STRUCTURES AND APPLICATIONS BCS304

There are 3 techniques, namely:
1) In order traversal (LVR)
2) Preorder traversal (VLR)
3) Post order traversal (LRV).
(Let L=moving left, V= visiting node and R=moving right).
Consider a binary tree with arithmetic expressions as shown in figure 17 and perform traversals

N
P
Joge
//\ C

Figure 17: Binary tree with arithmetic expression

1. INORDER TRAVERSAL

Inorder traversal calls for moving down tree toward left until you can go no farther. Then, you

"visit" the node, move one node to the right and continue. If you cannot move to the right, go back one

more node.
void inorder{tree_pointer ptr)
{ /¥ inorder tree traversal */
if (ptr)
{

inorder(ptr-=>left_child);
printf("%d", ptr->data);
indorder(ptr->right_child);

Figure 18: Inorder traversal

DATA STRUCTURES AND APPLICATIONS BCS304

The steps for traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.
3. Visit the right subtree, using inorder.
The inorder traversal tracing for the above given expression tree by using recursion is shown below:(

figure 19)

Call of Value in Action
inorder | Current Node
Driver +
1 *
2 *
3 /
4 A
5 0
4 A Printf(A)
6 0
3 / Printf(/)
7 B
8 0
7 B Printf(B)
9 0
2 * Printf(*)
10 C
11 0
10 C Printf(C)
12 0
1 * Printf(*)
13 D
14 0
13 D Printf(D)
15 0
Driver + Printf(+)

DATA STRUCTURES AND APPLICATIONS BCS304

16
17
16
18

Printf(E)

E
0
E
0

Figure 19: Tracing of inorder traversal
Each step of the trace shows the call of inorder, the value in the root, and whether or not the
printf function is invoked (Figure 19).Since there are 19 nodes in the tree, inorder() is invoked 19 times
for the complete traversal. The nodes of figure 17 would be output in an inorder as A/B*C*D+E
2. PREORDER TRAVERSAL

Visit a node, traverse left, and continue (figure 20). When it is not possible to continue, move
right and begin again or move back until you can move right and resume. The nodes of figure 17
would be output in preorder as +**/ABCDE

void preorder(tree_pointer ptr)
/* preorder tree traversal */

if (ptr)
{
printf("%d", ptr->data);
preorder(ptr->left_child);
predorder(ptr->right_child);
b

Figure 20: Preorder traversal
The steps for traversing a binary tree in preorder traversal are:
1. Visit the root.

DATA STRUCTURES AND APPLICATIONS BCS304

2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.
3. POSTORDER TRAVERSAL

Post order traversal calls for moving down tree toward left until you can go no farther. Then,
move one node to the right and continue. Then when it is not possible to move to the right, go back one
more node and visit the node. The nodes of figure 5.16 would be output in postorder as AB/C*D*E+

void postorder(tree_pointer ptr)

{
if(ptr)
{
postorder(ptr->left_child);
postorder(ptr->right_child);
printf(“%d”,ptr->data);
}
}

The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.

2. Visit the right subtree, using postorder

3. Visit the root.
4. ITERATIVE INORDER TRAVERSAL

With respect to the figure 17, a node that has no action indicates that the node is added to the
stack, while a node that has a printf action indicates that the node is removed from the stack (Figure
21). The left nodes are stacked until a null node is reached, the node is then removed from the stack,
and the node's right child is stacked. The traversal continues with the left child. The traversal is
complete when the stack is empty. The output of iterative inorder traversal for expression tree is given
below as A/B*C*D+E

void iter_inorder(tree_pointer node)

{
int top= -1; /¥ initialize stack */
tree_pointer stack[MAX_STACK_SIZE];
for (;;)
{

for (; node; node=node->left_child)
add(&top, node); /* add to stack */
node= delete(&top);
/* delete from stack */
if (node) break; /* empty stack */
printf("%D”, node->data);
node = node->right_child;

Figure 21: Inorder Iterative traversal

DATA STRUCTURES AND APPLICATIONS BCS304

5. LEVEL-ORDER TRAVERSAL

This traversal uses a queue (Figure 22). We visit the root first, then the root's left child followed
by the root's right child. We continue in this manner, visiting the nodes at each new level from the
leftmost node to the rightmost node. function addq() adds a tree node to queue and function deleteq()
deletes the front tree node from the queue.

level order traversal begins by adding the root to the queue.the function operates by deleting the
node at the front of the queue, printing out the node’s data field, and adding the node’s left and right
children to the queue. since a node’s children are at the next lower level, and we add the left child
before the right child, the function prints out the nodes using the ordering scheme and thus level order
traversal of arithmetic expression tree is +*E*D/CAB

void level_order(tree_pointer ptr)
{ /* level order tree traversal */
int front = rear = 0;
tree_pointer queue[MAX_QUEUE_SIZE];
if (!ptr) return; /* empty queue */
addq(front, &rear, ptr);
for (;;)
{

ptr = deleteq(&front, rear);
if (ptr)

printf("%d", ptr->data);
if (ptr->left_child)
addq(front, &rear, ptr->left_child);
if (ptr->right_child)
addq(front, &rear, ptr->right_child);
}
else
break;

Figure 22: Level Order Traversal

4.7 THREADED BINARY TREES

Shortcoming of linked representation of binary tree: There may be more null links than actual
pointers. A.J.Perlis and C.Thornton have devised a way to make use of these null links. Solution:
This drawback can be overcome by replacing null links by pointers, called threads, to other nodes in
the tree.
To construct the threads, we use the following rules:
1) If ptr->leftChild =NULL, we replace ptr->leftChild with a pointer to the node that would be visited

before ptr in an inorder traversal. i.e. we replace the null link with a pointer to the inorder predecessor

DATA STRUCTURES AND APPLICATIONS BCS304

of ptr (Figure 5.20).

2) If ptr->rightChild =NULL, we replace ptr->rightChild with a pointer to the node that would be

visited after ptr in an inorder traversal. i.e. we replace the null link with a pointer to the inorder

successor of ptr.

The node structure is given by following C declarations:

typedef struct threadedtree *threadedPointer;

typedef struct

{
short int leftThread:;

threadedPointer leftChild;

char data;

threadedPointer rightChild;

short int rightThread;
}threadedTree;

A empty threaded binary tree is represented by its header node as in figure 23

LefiThread LeftiChild data RightChild RightThread

TRUE

l | | FALSE i

A

. iy i
Ce—H)Y L 1)

L. /

.-o-ﬁ'h_?.
(B3 (c)
5N i
£ A el g
(D) :u_FHJ (F) (s)
25, S
1)
v,
bl
\3_-\
LAY :
// \ o \ -
; t€)
\ ' /.TV'P. \
— —~ N~
E —d [S F -2 S G) -4
,> -(\J -(.

Figure 24 shows the binary tree with its new threads drawn in as broken lines. This tree has 9

nodes and 10 NULL links ,which have been replaced by threads. if we traverse the tree in inorder, the

nodes will be visited in the order H,D,1,B,E,A,F,C,G. for example, node E has a predecessor thread

DATA STRUCTURES AND APPLICATIONS BCS304

that points to B and a successor thread that points to A

When we represent the tree in memory, we must be able to distinguish between threads and
normal pointers. This is done by adding two additional fields to the node structure, leftThread and
rightThread (Figure 23).

Assume that ptr is an arbitrary node in a threaded tree. If ptr->leftThread=TRUE, then ptr-
>leftChild contains a thread; otherwise it contains a pointer to the left child (Fig 24). Similarly, if ptr-
>rightThread=TRUE, then ptr->rightChild contains a thread; otherwise it contains a pointer to the right
child (Figure 24).

In figure two threads have been left dangling: one in the left child of H , the other in the right
child of G. We handle the problem of the loose threads by having them point to the header node, root.

The variable 'root’ points to the header as shown in figure 24.

Figure 24: Memory representation of threaded binary tree

1. Inorder traversal of a threaded binary tree

threaded_pointer insucc(threaded_pointer tree) void tinorder(threaded_pointer tree)
1 .
threaded_pointer temp; /¥ traverse the threaded binary tree inorder */
temp = tree->right_child; threaded_pointer temp = tree;
if ('tree->right_thread) for (;;)
while (!temp->left_thread) {
temp = temp->left_child; temp = insucc(temp);
return temp; if (temp==tree) break;
} printf("%3c”, temp->data);
by

2. Inserting A Node Into A Threaded Binary Tree

Let new node 'r' be has to be inserted as the right child of a node 's' (Figure 25). The cases for

insertion are 1) If s has an empty right subtree, then the insertion is simple and diagrammed in fig 25 a.

DATA STRUCTURES AND APPLICATIONS BCS304

2) If the right subtree of s is not empty, then this right subtree is made the right subtree of r after

insertion. When this is done, r becomes the inorder predecessor of a node that has a leftThread=

=true

field, and consequently there is a thread which has to be updated to point to r. The node containing this

thread was previously the inorder successor of s. Figure 25b illustrates the insertion for this case.

/ I
I v
| i
) 3 {)]
| - L -— I
. Q' RN §
T I ’
e RN »
A L7 N
r, " . 5
Yot) o .-
{m)
P
P i] I p
. ! 1 o 1
e e, P
/ 3
o &
; J 1 | - at VIR
CEF. ' By
- __Z
p e { IS
HHN e 1
~" & &L :
/ bd ks \ -
1. /57_1;"\ : \“r N -
___(,-'l ¥ L - g
~ . N !
Cr 5 €3 }n .
e Py e :

Nl

L_T“_’.__ PR g
Figure 25: Insertion of node into threaded binary tree

Insertion of node into threaded binary tree:-
void insertRight(threadedPointer s,threadedPointer r)
{
r->rightChild=parent->rightChild;
r->rightThread=parent->rightThread,;
r->leftChild=parent;
r->rightThread=TRUE;
s->rightChild= child;
s->rightThread=FALSE;
if('r->rightThread)
{
temp=insucc(r);
temp->leftChild=r;

4.8 BINARY SEARCH TREE (BST)

A binary search tree is a binary tree. it may be empty. if it is not empty then,it satisfies the following

properties:

DATA STRUCTURES AND APPLICATIONS BCS304

1) Each node has exactly one key and the keys in the tree are distinct (Figure 26).
2) The keys in the left subtree are smaller than the key in the root.

3) The keys in the right subtree are larger than the key in the root.

4) The left and right subtrees are also binary search trees.

) = —_
20) 30 ':hﬂ:l]
, A N _,-" i
(15 (25) (s (40) 770
s N | NP —('J
. \ _{: \
; oy F o F Y "".-“\‘I
12 1] 22 2 |
/ = L '_,f I\..__z‘
{a) {h) ek

Figure 26: Binary search trees
Fig(a) is not a Binary search tree fig(b) and (c) are Binary search trees

1. Searching A Binary Search Tree

Assume that we have to search for a node whose key value is k. The search begins at the root (Program
A and program B)

e If the root is NULL, then the tree contains no nodes and hence the search is unsuccessful.
e |f the key value k matches with the root's data then search terminates successfully.

e If the key value is less than the root's data, then we should search in the left subtree.

o If the key value is greater than the root's data, then we should search in the right subtree.

Analysis: If h is the height of the binary search tree, then the search operation can be performed in
O(h) time.

tree_pointer search(tree_pointer root, int key)
{
/* return a pointer to the node that contains key. If there is no such
node, return NULL */
if (lroot)
return MULL;
if (key == root->data)
return root;
if (key < root->data)
return search(root->left_child, key);
else
search(root-=right_child, key);
}

Program A: recursive search algorithm for BST

DATA STRUCTURES AND APPLICATIONS BCS304

tree_pointer search2(tree_pointer tree, int key)
while (tree)

if (key == tree->data)

return tree;
if (key < tree->data)

tree = tree->left_child;
else

tree = tree->right_child;

return NULL;

Program B: Iterative search algorithm for BST
2. Inserting into a binary search tree

e Firstly verify, if the tree already contains the node with the same data (Figure 27 &Program C).
e If the search is successful, then the new node cannot be inserted into the binary search tree.

e If the search is unsuccessful, then we can insert the new node at that point where the search
terminated.

(a) (b)
Figure 27: insertion of node 35 to existing BST

void insert_node(tree_pointer *node, int num)

tree_pointer ptr,

temp = modified_search(*node, num);
if (temp || (*node))

{

ptr = (tree_pointer) malloc(sizeof(node));
if (IS_FULL(ptr))

fprintf(stderr, “"The memory is full\n”);
exit(1);

ptr->data = num;
ptr->left_child = ptr->right_child = NULL;
if (*node)
if (num<temp->data)
temp->left_child=ptr;
else
temp->right_child = ptr;
else
*node = ptr;

Program C: Node insertion to BST

DATA STRUCTURES AND APPLICATIONS BCS304

3. Deletion from a binary search tree

Figure 28: BST

e Deletion of a leaf: To delete 35 from the tree of figure 28, the left-child field of its parent is set
to NULL.

e Deletion of a non-leaf that has only one child: The node containing the dictionary pair to be
deleted is freed, and its single-child takes the place of the freed node. So, to delete the 5 from

the tree in figure 29, we simply change the pointer from the parent node to the single-child
node.

ol 5] " 40

Fad
. L
i

8,

:’; 2) ;-ri-t} ‘ H1-uu ,
Figure 29(a): node 5 deletion (b): node 30 deletion
e The pair to be deleted is in a non-leaf node that has two children: The pair to be deleted is
replaced by either the largest pair in its left subtree or the smallest one in its right subtree. For

instance, if we wish to delete the pair with key 30 from the tree in figure 28, then we replace it by
key 5 as shown in figure 29(b)

4. Joining and splitting binary tree

There are two types of join operation on a binary search tree:

1) ThreeWayJoin(small,mid,big): this creates a binary search tree consisting of the pairs initially in
the BST small and big as well as pair mid. it is assumed that each key in small is smaller than mid.key
and that each key in big is greater than mid.key. following the join , both small and big are empty.

2) TwoWayJoin(small,big): this joins the two binary search tree small and big to obtain a single BST

that contains all the pairs originally in small and big. it is assumed that all keys of small are smaller

DATA STRUCTURES AND APPLICATIONS BCS304

than all keys of big and that following the join both small and big are empty.
3)split(theTree k,small,big,mid)
Splitting a binary search tree will produce three trees: small, mid and big.

e If key is equal to root->data, then root->1link is the small, root->data is mid & root->rlink is

big.

e If key is lesser than the root->data, then the root's along with its right subtree would be in the
big.

e if key is greater than root->data, then the root’s along with its left subtree would be in the
small.

4. 9 Application of Trees: EXPRESSION TREES

Expression tree is a binary tree, because all of the operations are binary. It is also possible for a
node to have only one child, as is the case with the unary minus operator. The leaves of an expression
tree are operands, such as constants or variable names, and the other (non leaf) nodes contain
operators.
Once an expression tree is constructed we can traverse it in three ways:

* Inorder Traversal
* Preorder Traversal
« Postorder Traversal
Figure 30 shows some more expression trees that represent arithmetic expressions given in infix form.

(a) (@ +b) +(c/d)

(c) ((-a) + (x +y))/ ((+b) * (c * a))

Figure 30: Expression trees

DATA STRUCTURES AND APPLICATIONS BCS304

1. Construction of expression tree

An expression tree can be generated for the infix and postfix expressions. An algorithm to convert a
postfix expression into an expression tree is as follows:

e Read the expression from left to right and one symbol at a time.

e If the symbol is an operand, we create a one-node tree and push a pointer to it onto a stack.

e If the symbol is an operator, we pop pointers to two trees T1 and T2 from the stack (T1 is
popped first) and form a new tree whose root is the operator and whose left and right children

point to T2 and T1 respectively. A pointer to this new tree is then pushed onto the stack.

DATA STRUCTURES AND APPLICATIONS BCS304

Construct an expression tree for the postfix expression: ab +cde + * *

Solution:

The first two symbols are operands, so we create one-node trees and push pointers to
them onto a stack.

v
2D Q‘%‘

Next, a '+’ is read, so two pointers to trees are popped, a new tree is formed, and a
pointer to it is pushed onto the stack.

:
G)/\ O,

Next, c, d, and e are read, and for each one—node tree is created and a pointer to the
corresponding tree is pushed onto the stack.

G odd d

Now a '+’ is read, so two trees are merged.

£

&
&)
)

DATA STRUCTURES AND APPLICATIONS BCS304

’

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a “*’ as
root.

|/+\: ,;\'1
_ N
& ' /b\ /‘/_ }‘\,‘
2/ <7, =/ /\U\
/d\ l/ -e\n
_) S

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is
left on the stack.

For the above tree:
Inorder form of the expression: a + b *c*d + e

Preorder form of the expression: * + ab *c + d e

Postorder form of the expression: ab + cd e + * *

2. Building binary tree from traversal pairs

Sometimes it is required to construct a binary tree if its traversals are known. From a single
traversal it is not possible to construct unique binary tree. However any of the two traversals are given
then the corresponding tree can be drawn uniquely:

* Inorder and preorder,

« Inorder and postorder,

* Inorder and level order

The basic principle for formulation is as follows:

If the preorder traversal is given, then the first node is the root node. If the postorder traversal is
given then the last node is the root node. Once the root node is identified, all the nodes in the left sub-
trees and right sub-trees of the root node can be identified using inorder.Same technique can be applied

repeatedly to form sub-trees.

DATA STRUCTURES AND APPLICATIONS BCS304

Example 1:

Construct a binary tree from a given preorder and inorder sequence:

Preorder: ABDGCEHIF
Inorder: DGBAHEICF

Solution:
From Preorder sequence ABD G CEHIF, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B

Right sub tree is: HEICF

The Binary tree upto this point looks like:

o

DGB] [HEICF

s gl

\ J

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence D G B, we can find that D and G are to the left of B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G, we can find that there is no left node to D and G is at
the right of D.

DATA STRUCTURES AND APPLICATIONS BCS304

The Binary tree upto this point looks like:

of
o

To find the root, left and right sub trees for HEI C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From the inorder sequence H EI C F, we can find that H E I are at the left of C and F is
at the right of C.

The Binary tree upto this point looks like:
()

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence H E I, we can find that H is at the left of E and I is at the
right of E.

The Binary tree upto this point looks like:

(A\

ﬁf“@

\) <”J ()

DATA STRUCTURES AND APPLICATIONS BCS304

Example 2:
Construct a binary tree from a given postorder and inorder sequence:

Inorder- D GBAHEICF
Postorder: G DB HIEFCA

Solution:
From Postorder sequence GDBHIEF C A, the rootis: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B
Right sub tree is: HEICF

The Binary tree upto this point looks like:

)
e~ .y

DGEB] [H E IEE

To find the root, left and right sub trees for D G B:

From the postorder sequence G D B, the root of tree is: B

From the inorder sequence D G B, we can find that D G are to the left of B and there is
no right subtree for B.

The Binary tree upto this point looks like:
/);

/ ~
/\BD HEICF

-
DG

To find the root, left and right sub trees for D G:

From the postorder sequence G D, the root of the tree is: D

From the inorder sequence D G, we can find that is no left subtree for D and G is to the
right of D.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for HEI C F:

From the postorder sequence H I E F C, the root of the left sub tree is: C

From the inorder sequence H EI C F, we can find that H E I are to the left of C and F is
the right subtree for C.

DATA STRUCTURES AND APPLICATIONS BCS304

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I:

From the postorder sequence H I E, the root of the tree is: E

From the inorder sequence H E I, we can find that H is left subtree for E and I is to the
right of E.

The Binary tree upto this point looks like:

)
A
< P

i) (c)
PO
ONNONG

Ny A

(1)

W& L) LE)

4.10 ADDITIONAL BINARY TREE OPERATIONS

Copying Binary Trees:-

This function is a slightly modified version of postorder. Function which returns an exact copy of the
original tree:

treepointer copy(treepointer original)

treepointer temp;
if(original)

MALLOC(temp, sizeof(*temp));
temp->leftchild = copy(original->leftchild);
temp->rightchild = copy(original->rightchild);
temp->data = original->data;

return temp;

}
return NULL;

DATA STRUCTURES AND APPLICATIONS BCS304

Testing Equality:-

Equivalent binary trees have the same structure and the same information in the corresponding nodes.
By same structure, we mean that every branch in one tree corresponds to a branch in the second tree. i.e
the branching of the 2 trees is identical. This function returns TRUE if the two trees are equivalent and

FALSE if they are not.

int equal(treepointer first, treepointer second)

return(('first && !second) || (first && second && (first->data == second->data) &&
equal(first->leftchild, second->leftchild) && equal (first->rightchild, second-> rightchild))

ks

The Satisfiability Problem:-
e Consider the formula that is constructed by set of variables: xi, x, ..., Xn and operators
A(and), v(or), = (not).
e The variables can hold only of two possible values, true or false.
e The expression can form using these variables and operators is defined by the
following rules.
e A variable is an expression
e If x and y are expressions, then —x, XAy, Xvy are expressions
e Parentheses can be used to alter the normal order of evaluation (= > A > V)

Example: X1V (X2 A 1 X3) If x1 and xs are false and x: is true
= false v (true A —false)

= false v true
= true

The satisfiablity problem for formulas of the propositional calculus asks if there is anassignment of
values to the variable that causes the value of the expression to be true.

Let’s assume the formula in a binary tree

DATA STRUCTURES AND APPLICATIONS BCS304

(X1 A —lX2) \% (—| X1 A X3) VvV X3

)
ONERG)
ONORORO

(=) ()

Figure ; Propositional formula in a binary tree
The inorder traversal of this tree is

X1A X2V 1 X1A X3V X3

The algorithm to determine satisfiablity is to let (X1, X2, x3) takes on all the possiblecombination of true
and false values to check the formula for each combination.

For n value of an expression, there are 2" possible combinations of true and false

For example n=3, the eight combinations are (t,t,t), (t,t,), (t,f,t), (t.f.F), (f.t,0), (f.t,1), (ff,0), (fff).

The algorithm will take O(g 2"), where g is the time to substitute values for X1, X,... X» andevaluate the
expression.

To evaluate an expression, we traverse its tree in postorder,

The node structure for this problem is
leftChild Data value rightChild

Node structure in C:
typedef enum {not, and, or, true, false} logical;
typedef struct node *treePointer;
typedef struct
{
treePointer leftChild,;
logical data;
short int value;
treePointer rightChild,;
}node;

Assume that node->data contains the current value of the variable represented at the leaf node. In the
above tree, data field in x1, x2 and x3 contains either TRUE or FALSE. Expression tree with n variables

is pointed at by root. With these assumptions we can write our first version of satisfiability algorithm

As below

DATA STRUCTURES AND APPLICATIONS BCS304
The first version of Satisfiability algorithm

for (all2® possible comkbinations} {
generate the next combination;
replace the variables by thelr wvalues;
evaluate root by traversing it in postorder;
if (root—ovalue) {
printf{<combinaticn>};
return;
}

}
printf ("No satisfiable combination\n"};

The C function that evaluates the tree is modified version of postorder traversal, given below:

void postordereval(treepointer node)
{
if(node)
{
postordereval(node->leftchild);
postordereval(node->leftchild);
switch(node->data)
{
case not : node->value = ! node->rightchild->value;
break;
case and : node->value = node->rightchild->value &&
node->leftchild->value ; break;
case or : node->value = node->rightchild->value ||
node->leftchild->value ; break;
case true : node->value = TRUE;
break;
case false : node->value = FALSE;
break;
}

Data structures and Applications BCS304

MODULE-1
STACKS

TOPICS

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic Arrays,
Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression.

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.

STACK
“Stack is an ordered collection of elements or items of same type can be inserted and deleted at only
one end called Top of stack”. (OR)

STACK is an ordered-list in which insertions (called push) and deletions (called pop) are
made at one end called the top. Since last element inserted into a stack is first element removed, a
stack is also known as a LIFO list (Last In First Out). Stack can be implemented using the Linked List
or Array.

Stack belongs to non-primitive linear data structure.

Consider a stack s=(ao,as,....,an-1).here a0 is the bottom element , an1 is the top element and
generally, element a; is on the top of element aj.1,0<i<n.

Top dn-1
an-2
a1
ao

Figure la: Stack S
If A, B, C, D, E are the elements added into stack in that order then E is the first element to be

deleted. Figure shows insertion and deletion of elements from the stack.

‘ F.L lop |
| | Dw-top |D D e top
m Ch-top C C C|
'Ble-top |B |B | B B
Ar-wp (A A (Al [A] A
add ad add add del

Figure 1b: Insertion and deletion of elements from the stack

Page

Data structures and Applications BCS304

Thus, Stack is LIFO Structure i,e Last in First Out as shown in figure 1. Example, we can place or

remove a card or plate from top of the stack only.

Figure 2: stack of cards and plates

R BieQ

Last In - First Qut
Push Pop

Data Element Data Elemant
Cata Eleomont Data Elemeant
Data Element Data Element
Cata Slomont Data Element

Data Element Data Element

Stack Stack

Figure 3: Stack representation
Figure 2 shows the example stacks and figure 3 shows stack representation indicting LIFO operation.
EXAMPLES FOR STACKS:- a stack of coins, a stack of plates , a stack of books , a stack of flooded

towels , phone call log, tennis balls in a container, undo and redo operations etc.

2.1 SYSTEM STACK

e Astack used by a program at run-time to process function-calls is called system-stack (Fig.4).
« When functions are invoked, programs create a stack-frame (or activation-record) & place the stack-
frame on top of system-stack
« Initially, stack-frame/activation record for invoked-function contains only pointer to previous
stack-frame & return-address.
* The previous stack-frame pointer points to the stack-frame of the invoking-function, while return-

address contains the location of the statement to be executed after the function terminates.

Page

Data structures and Applications BCS304

« If one function invokes another function, local variables and parameters of the invoking-function are
added to its stack-frame.

* A new stack-frame is then created for the invoked-function & placed on top of the system-stack.

« When this function terminates, its stack-frame is removed (and processing of the invoking-function,
which is again on top of the stack, continues).

« Frame-pointer(fp) is a pointer to the current stack-frame.

~—| previous frame pointer 2 fp
' l return addresy ul
, ‘ S :
|
local variables
\
previous frame pointer «—jp —— previous frame pointer
1— retumn address | main ¥ — return address main
(s} 1]

Figure 4: System stack before and after function al invoked
STACK ADT

structure Stack is
objects: a finite ordered list with zero or more elements.
functions:
for all stack = Stack, item = element, max_stack_size = positive integer
Stack CreateS(max_stack_size) ::=
create an empty stack whose maximum size is max_stack_size

Boolean IsFull(stack, max_stack_size) ::=
if(number of elements in stack == max_stack_size)
return TRUE
else
return FALSE

Stack Add(stack, item) ::=
if (IsFull(stack))
stack_full
else
insert item into top of stack and return

Boolean IsEmpty(stack) ::=

if(stack == CreateS(max_stack_size})
return TRUE
else

return FALSE

Element Delete(stack) ::=
if(IsEmpty(stack))
return
else
remove and return the item on the top of the stack

Page

Data structures and Applications BCS304

ARRAY REPRESENTATION OF STACKS

e Stacks may be represented in the computer in various ways such as one-way linked list
(Singly linked list) or linear array.

e Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

e TOP which contains the location of the top element in the stack. If TOP= -1, then it
indicates stack is empty.

e MAX STACK SIZE which gives maximum number of elements that can be stored in
stack.

Stack can represented using linear array as shown below

A B C
0 1 2 3 4 5 6 7
TOP MAX STACK SIZE

2.2 STACK BASIC OPERATIONS

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from
these basic stuffs, a stack is used for the following two primary operations —

e push() — pushing (storing / inserting) an element on the stack.

e pop() —removing (accessing/ deleting) an element from the stack.

When data is pushed onto stack, to use a stack efficiently we need to check status of stack as well.
For the same purpose, the following functionality is added to stacks

e peek() — get the top data element of the stack, without removing it.

e isFull() — check if stack is full or overflow.

e isEmpty() — check if stack is empty or underflow.

At all times, we maintain a pointer to the last pushed data on the stack. As this pointer always

represents the top of the stack, hence named top. The top pointer provides top value of the stack without
actually removing it.

PUSH Operation
The process of putting a new data element onto stack is known as PUSH Operation. Push operation

involves series of steps —
e Step 1 — Check if stack is full.
e Step 2 — If stack is full, produce error and exit.
e Step 3 — If stack is not full, increment top to point next empty space.
e Step 4 — Add data element to the stack location, where top is pointing.

e Step 5 — return success.

Page

Data structures and Applications BCS304

if linked-list is used to implement stack, then in step 3, we need to allocate space dynamically. Push

operation is shown in figure 5.

e -\ Push Operation

Top - - =

Top

Stack Stack

Figure 5: Push operation
POP Operation
Accessing the content while removing it from stack, is known as pop operation. In array

implementation of pop() operation, data element is not actually removed, instead top is decremented to a
lower position in stack to point to next value. But in linked-list implementation, pop() actually removes
data element and deallocates memory space. Pop operation is shown in figure6.
A POP operation may involve the following steps —

e Step 1 — Check if stack isempty.

e Step 2 — If stack is empty, produce error and exit.

e Step 3 — If stack is not empty, access the data element at which top is pointing.

e Step 4 — Decrease the value of top by 1.

Pop Operation / -

© top-

e Step 5 — return success.

top

Stack " Stack
Figure 6: pop operation

IMPLEMENTATION OF STACK OPERATIONS
The easiest way to implement stack ADT is using one-dimensional array.
stack]| MAX_STACK_SIZE],where MAX_STACK _SIZE =maximum number of entries in the stack.
« The first element of the stack is stored in stack [0],stack[1] is second element and stack[i-1] is the ith
element.
* “top™ points to the top element in the stack (top=-1 to denote an emptystack).

» The CreateS() function can be implemented as follows and it creates stack of size 100.

Page

Data structures and Applications BCS304

Stack CreateS(maxStackSize)::=
#define MAX_STACK_SIZE 100
struct element

{
int key;
1
element stack[MAX_STACK_SIZE];
int top=-1,
Boolean IsEmpty(Stack)::= top<0; [used to check if stack is empty
Boolean IsFull(Stack) ::= top>=MAX_STACK_SIZE-1; [[used to check if stack is full

void add(int top, element item)
if (top >= MAX_STACK_SIZE-1)

stack_full();
return;

stack[++top] = item;

Function push/add() checks to see if the stack is full. If it is, it calls stack_full(), which prints an
error message and terminates execution. When the stack is not full, we increment top and assign item to

stack[top].

element delete(int top)

if (top == -1)
return stack_empty(); /* returns and error key */
return stack[(top)--1;

b

Function pop/delete() checks to see if the stack is empty using top . If top reaches -1,then it
calls stack_empty(), which prints an error message and terminates execution. When the stack is not
empty, we return the top most element stack[top] and decrement top.

void stack_full()
{ printf(stderr,”stack 1s full, can“t add element”);
exit(EXIT_FAILURE);

¥

void stack_empty ()

{ printf(stderr,”’stack is empty, can*t deleteelement”);
exit(EXIT_FAILURE);

}

2.3 STACK USING DYNAMIC ARRAYS
Shortcoming of static stack implementation: is the need to know at compile-time, a good bound
(MAX_STACK_SIZE) on how large the stack will become.

« This shortcoming can be overcome by using a dynamically allocated array for the elements & then

Page

Data structures and Applications BCS304

« increasing the size of the array as needed Initially, capacity=1 where capacity=maximum no. of stack-
elements that may be stored in array.
» The CreateS() function can be implemented as follows

Stack CreateS()::=
struct element

{
¥

element *stack;
MALLOC(stack,sizeof(*stack));

int capacit\,r:D:l;

int top=-1;

Boolean IsEmpty(Stack)::= top<0;
Boolean IsFull(Stack) ::= top>=capacity-1;

int key;

void stackFull()

{
REALLOC(stack,2*capacity®*sizeof(*stack));

capacity=2*capacity;
be

void add(int top, element item)
if (top == MAX_STACK_SIZE-1)

stack_full();
return;

stack[++top] = itemn;

¥

element delete(int top)

{
if (top == -1)
return stack_empty(); /* returns and error key */
return stack[(top)--1;

¥

void stack_full()
{ printf(stderr,”’stack is full, can*t addelement”);
exit(EXIT_FAILURE);

}

void stack_empty ()

{ printf(stderr,”’stack is empty, can“t deleteelement”);
exit(EXIT_FAILURE);

}

Once the stack is full, realloc() function is used to increase the size of array.In array-doubling,
we double array-capacity whenever it becomes necessary to increase the capacity of an array.
ANALYSIS

In worst case, the realloc function needs to allocate 2*capacity*sizeof(*stack) bytes of memory

and copy capacity*sizeof(*stack) bytes of memory from the old array into the new one. The total time

Page

Data structures and Applications BCS304

spent over all array doublings = O(2k) where capacity=2k. Since the total number of pushes is more than

2k-1, the total time spend in array doubling is O(n) where n=total number of pushes.

24 APPLICATIONS OF STACKS

1

2
3
4
S

Stack is used by compilers to check for balancing of parentheses, brackets and braces.

Stack is used to evaluate a postfix expression.

Stack is used to convert an infix expression into postfix/prefix form.

In recursion, all intermediate arguments and return values are stored on the processor*sstack.
During a function call the return address and arguments are pushed onto a stack and on return

they are popped off.

EXPRESSIONS

An algebraic expression is a legal combination of operators and operands. “The sequence of
operators and operands that reduces to a single value after evaluation is called Expression”.

Operand is the quantity on which a mathematical operation is performed. Operand may be a
variable like X, y, z or a constant like 5, 4, 6 etc.

Operator is a symbol which signifies a mathematical or logical operation between the operands.
Examples of familiar operators include +, -, *, /, * etc.

An algebraic expression can be represented using three different notations. They are infix,

postfix and prefix notations:

Infix: It is the form of an arithmetic expression in which we fix (place) the arithmetic operator in
between the two operands. Example: (A + B) * (C - D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic operator
before (pre) its two operands. The prefix notation is called as polish notation (due to the polish
mathematician Jan Lukasiewicz in the year 1920). Example: *+ AB-CD

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic operator
after (post) its two operands. The postfix notation is called as suffix notation and is also referred
to reverse polish notation. Example: AB+CD - *

The three important features of postfix expression are:

Postfix expression is parenthesis-free expression.

While evaluating the postfix expression the precedence and Associativity of the operators is no
longer required

all expressions given to the system , will be converted into postfix form by the complier since it
is easy and more efficient to evaluate.

Page

Data structures and Applications BCS304

Converting expressions using Stack:
Let us convert the expressions from one type to another. These can be done as follows
1. Infix to postfix
2. Infix to prefix
3. Postfix to infix
4, Postfix to prefix
5. Prefix to infix

6. Prefix to postfix

Pr n fth rator
The first problem with understanding the meaning of expressions and statements is finding out the
order in which the operations are performed.
Example: assume that a =4, b =c =2, d =e =3 in below expression
X=a/b-c+d*e-a*c

((4/2)-2) + (3*3)-(4*2) (4 (2-2 +3)) *(3-4)*2
=0+9-8 OR = (4/3) * (-1) * 2
=1 = -2.66666

The first answer is picked most because division is carried out before subtraction, and multiplication
before addition. If we wanted the second answer, write expression differently using parentheses to
change the order of evaluation

X=((@a/(b-c+d))*(e-a)*c

In C, there is a precedence hierarchy that determines the order in which operators are evaluated.
Below figure contains the precedence hierarchy for C.

Page

Data structures and Applications BCS304

Token Operator Precedence | Associativity
() function call 17 left-to-nght
[] array element

— struct or union member

—+ Increment, Decrement 16 left-to-right
—+ decrement, increment 15 right-to-left
! logical not

B one's complement

—+ unary minus or plus

& * address or indirection

sizeof size (1n bytes)

(type) type cast 14 right-to-left
* /% Multiplicative 13 left-to-nght
+- binary add or subtract 12 left-to-nght
<< > shuft 11 left-to-right
> = relational 10 left-to-right
o —

== I= equality 9 left-to-night
& Bitwise and 8 left-to-nght
. bitwise exclusive or 7 left-to-nght
| Bitwise or 6 left-to-nght
&& logical and 5 left-to-nght
| logical or 4 left-to-nght
7 conditional 3 right-to-left
=+= = /=%=%= | assignment 2 right -to-left
o= mu=&=A=|=

. comuma 1 left-to-nght

CONVERSION FROM INFIX TO POSTFIX

Procedure to convert from infix expression to postfix expression is as follows:

1.

2
3.
4

Scan the infix expression from left to right.

If the scanned symbol is left parenthesis, push it onto the stack.

If the scanned symbol is an operand, then place directly in the postfix expression (output).

If the symbol scanned is a right parenthesis, then go on popping all the items from the stack and
place them in the postfix expression till we get the matching left parenthesis.

If the scanned symbol is an operator, then go on removing all the operators from the stack and
place them in the postfix expression, if and only if the precedence of the operator which is on the
top of the stack is greater than (or greater than or equal) to the precedence of the scanned
operator and push the scanned operator onto the stack otherwise, push the scanned operator onto
the stack.

Page

Data structures and Applications BCS304

Example 1:
Convert ((A— (B + C)) * D) 1 (E + F) infix expression to postfix form:
SYMBOL POSTFIX STRING STACK REMARKS
((
(((
A A ((
A ((-
([|A ((-(
B AB ((-(
+ AB ((-(+
C ABC ((-(+
) ABC+ ((-
) ABC+- (
* ABC+- (*
D ABC+-D (*
) ABC+-D*
ABC+-D¥* T
(ABC+-D* T
E |ABC+-D*E T(
+ |ABC+-D*E T(+
F |ABC+-D*EF T(+
) ABC+-D*EF+ T
End of The input is now empty. Pop the output symbols
string |ABC+-D*EF+1 from the stack until it is empty.

Page 11

Data structures and Applications BCS304

Example 2:
Convert the following infix expression A+ B * C — D/ E * H into its equivalent postfix expression

SYMBOL | POSTFLX STRING STACK REMARKS
A A

+ A +

B AB

* AB

C ABC + *

- ABC* + -

D ABC*+D -

/ ABC*+D -/

E ABC*+DE -/

* ABC*+DE/ - X

H ABC*+DE/H - *

End of The input is now empty. Pop the output symbols from
string ABC*+DE/HZ¥*- the stack until it is empty.

EVALUATION OF POSTFIX EXPRESSION
The postfix expression is evaluated easily by the use of a stack. When a number is seen, it is
pushed onto the stack; when an operator is seen, the operator is applied to the two numbers that are
popped from the stack and the result is pushed onto the stack. When an expression is given in postfix
notation, there is no need to know any precedence rules; this is our obvious advantage. Although infix
notation is the most common way of writhing expressions, it is not the one used by compilers to evaluate
expressions. Instead compilers typically use a parenthesis-free postfix notation.
Steps for evaluating postfix expression
1) Scan the symbol from left to right.
2) If the scanned-symbol is an operand, push it on to the stack.
3) If the scanned-symbol is an operator, pop two operands from the stack. The first popped operand
acts as operand2 and the second popped operand act as operand 1.Now perform the indicated
operation and Push the result on to the stack.

4) Repeat the above procedure till the end of input is encountered

Page 12

Data structures and Applications BCS304

Example 1:

Evaluate the postfix expression: 6523 +8*+3 + *

SYMBOL OPE?‘AND OPERAND 2 VALUE STACK REMARKS
& &
5 &, 5
z &, 5, 2
The first four symbols are placed on
3 6,5, 2,3 the stack.
Next a '+ is read, so 3 and 2 are
+ 2 3 5 6,5 5 popped from the stack and their
sum 5, is pushed
8 2 3 L 6,5 5,8 Mext 8 is pushed
Now a *' is seen, so 8 and 5 are
r
> 8 40 6, 5, 40 popped as 8 * 5 = 40 is pushed
MNext, a *+' is seen, so 40 and 5 are
+ > 40 45 6, 45 popped and 40 + 5 = 45 is pushed
5 40 45 G, 45, 3 Mow, 3 is pushed
Mext, "+" pops 3 and 45 and pushes
+ 45 3 48 6, 48 45 + 3 — 48 is pushed
Finally, a **' is seen and 48 and 6
* [48 288 288 are popped, the result 6 * 483 =
288 is pushed

Example 2:

Evaluate the following postfix expression:

623 +-382/+*2T3+

SYMBOL OPERAND 1 OPERAND 2 VALUE | STACK
[+
2 6, 2
3 6, 2,3
+ 2 3 5 6, 5
- [5 1 1
3 & 5 1 1, 3
8 & 5 1 1, 3, 8
2 [5 1 1, 3,8, 2
! 8 2 4 1, 3, 4
N 3 4 7 1, 7
® 1 7 7 7
2 1 7 7 7.2
T 7 2 49 49
3 7 2 49 49, 3
+ 49 3 52 52

2.5 RECURSION

Recursion is the process of repeating items in a self-similar way. In programming languages, if a

program allows you to call a function inside the same function, then it is called a recursive call of the

function.

Page 13

Data structures and Applications BCS304

void recursion()

recursion(); /* function calls itself */

¥

void main()

{

recursion();

¥

The C programming language supports recursion, i.e., a function to call itself.
A recursive function is a function that calls itself during its execution.
But while using recursion, programmers need to be careful to define an exit condition from the function;
otherwise it will go into an infinite loop.
Recursive functions are very useful to solve many mathematical problems, such as calculating the
factorial of a number, generating Fibonacci series, etc.
RECURSION PROPERTIES

A recursive function can go infinite like a loop. To avoid infinite running of recursive function,
there are two properties that a recursive function must have —

e Base criteria — There must be at least one base criteria or condition, such that, when this
condition is met the function stops calling itself recursively.
e Recursive criteria — the recursive calls should progress in such a way that each time a recursive

call is made it comes closer to the base criteria.
1. FACTORIAL NUMBER

The product of the positive integers from 1 to n, inclusive is called n factorial and is usually
denoted by n!

n!=1%2*3%4*,....... *(n-2)*(n-1)*n.

Factorial function may be defined as

a. if n=0 then return 1

b. if n>0, then return n*(n-1)!
The following example calculates the factorial of a given number using a recursive function

#include <stdio.h>
int factorial(unsigned int n)

{
if(n<=1)
{
return 1,
}
return n * factorial(n - 1);
}

Page 14

Data structures and Applications BCS304

void main()

t
int n,res;
printf(“\n enter the value for n);
scanf(*“%d”,&n);

res=factorial(n);
printf("Factorial of %d is %d\n", n, res);

¥

When the above code is compiled and executed, it produces the following result — Factorial of 15 is
2004310016

2. GCD OF TWO NUMBERS
GCD is calculated by using GCD(a,b)=GCD(b,a mod b).
Euclid*s algorithm
1. Take a and b, and calculate the remainder by performing a%b.
2. Assign the value of b to a and value of remainder to b.
3. Repeat the steps 1 & 2 until value of b becomes 0.
4. 1fb=0, then return value of ,,a" as the GCD value of a & b.

#include <stdio.h>
int gcd(int m, int n);
void main()
{
int a, b,res;
printf("Enter two positive integers: "');
scanf("%d %d", &a, &b);
res=gcd(a,b);
printf("G.C.D of %d and %d is %d.", n1, n2, res);

int gcd(int a, int b)

int rem;
if (b==0)
return a;
else
{
rem=a%b;
a=b;
b=rem;
return gcd(a,b);
}
Output
Enter two positive integers:
366 60
G.C.D of 366 and 60 is 6

Page 15

Data structures and Applications BCS304

3. FIBONACCI SERIES
The Fibonacci sequence is the sequence of integers, where each number in this sequence is the
sum of two preceding elements.
A formal definition is
a. 1fn=0or 1,return n(0/1)
b. Ifn>1 returnfib(n-1)+fib(n-2)
#include <stdio.h>

int fib(int i)
{
if(i==0)
{
return O;
}
if(i==1)
{
return 1;

k
return (fib(i-1) + fib(i-2));

}
void main()
t
inti;
for (i=0; i< 10; i++)
{
printf("%d\t", fib(i));
}

When the above code is compiled and executed, it produces the following result —
0112358132134

4. TOWER OF HANOI PROBLEM
Tower of Hanoi, is a mathematical puzzle which consists of three tower (pegs) and more than
one rings; as depicted in below figure 7

Disks

Figure 7: Tower of Hanoi

Page 16

Data structures and Applications BCS304

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits
over the larger one. There are other variations of puzzle where the number of disks increase, but the
tower count remains the same.

Rules
The mission is to move all the disks to some another tower without violating the sequence of
arrangement. The below mentioned are few rules which are to be followed for tower of hanoi —

e Only one disk can be moved among the towers at any given time.

e Only the ""top" disk can be removed.

e No large disk can sit over a small disk.
Here is an animated representation in figure 8 of solving a tower of hanoi puzzle with three disks
—Tower of hanoi puzzle with n disks can be solved in minimum 2n—1 steps. This presentation shows
that a puzzle with 3 disks has taken 23—1 = 7 steps.
Algorithm
To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser
amount of disks, say — 1 or 2. We mark three towers with name, source, destination and aux (only to
help moving disks). If we have only one disk, then it can easily be moved from source to destination
peg.
If we have 2 disks —

e First we move the smaller one (top) disk to aux peg

e Then we move the larger one (bottom) disk to destination peg

e And finally, we move the smaller one from aux to destination peg.
So now we are in a position to design algorithm for Tower of Hanoi with more than two disks. We
divide the stack of disks in two parts. The largest disk (nthdisk) is in one part and all other (n-1) disks
are in second part. Our ultimate aim is to move disk n from source to destination and then put all other
(n-1) disks onto it. Now we can imagine to apply the same in recursive way for all given set of disks.
So steps to follow are —

e Step 1 — Move n-1 disks from source to aux

e Step 2 — Move nth disk from source to dest

e Step 3 — Move n-1 disks from aux to dest
A recursive algorithm for Tower of Hanoi can be driven as follows —

START
Procedure tower(disk, source, dest, aux)
ifn==1, THEN

move disk from source to dest

Page 17

Data structures and Applications BCS304

else
tower(n - 1, source, aux, dest) // Step 1
move disk from source to dest // Step 2
tower(n - 1, aux, dest, source) // Step 3

END IF

END Procedure

STOP

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include <stdio.h>

void towers(int, char, char, char);

int main()

t
int num;
printf("Enter the number of disks : ");
scanf("%d", &num);
printf(*"The sequence of moves involved in the Tower of Hanoi are :\n");
towers(num, 'A', 'C', 'B");

getch();
return O;
}
void towers(int num, char source, char dest, char aux)
{
if (num==1)
printf(*\n Move disk 1 from peg %c to peg %c", source,dest);
return;
}

towers(num - 1, source, aux,dest);
printf(*\n Move disk %d from peg %c to peg %c", num, source, dest);
towers(num - 1, aux, dest, source);

¥

The below figure shows the disks movements in tower of Hanoi for 3 disks

Figure 8: Disk movements

Page 18

Data structures and Applications BCS304

The below figure shows the recursive function calls in tower of Hanoi for 3 disks
towers:(3,a ¢, b)

el R

towersi2.a b, ¢) A= towersil. b, ¢ a)
/\]‘i
| l
towers(l.a ¢ b) el towers (l,¢.b,a) towers(l.b.a ¢) b= ¢ towers(l.a ¢. b)
!l X|' '||' ;'i
a -; ¢ ¢ -) b b=2a a9

ACKERMANN'S FUNCTION

Ackermann—Péter function, is defined as follows for nonnegative integers m and n:

n+1 if m =10
A{lm,n) = § A{m— 1,1} if e >0 and = =10
Alm -1, Alm,n— 1)) ifm >0 and = > 0.

To solve A(2,1) using Ackerman*s function: (m=2,n=1)

A(2,1) = A(1,A(2,0))
=A(1,A(1,1))
=A(1,A(0,A(1,0))
=A(1,A(0,A(0,1)))
=A(1,A(0,2))
=A(1,3)
=A(0,A(1,2))
=A(0,A(0,A(1,1)))
=A(0,A(0,A(0,A(1,0))))
=A(0,A(0,A(0,A(0,1))))
=A(0,A(0,A(0,2)))
=A(0,A(0,3))
=A(0,4)

A(2,1)=5

Program:-

#include<stdio.h>

int ackerman(int m, int n)

{
if(m==0)
return (n+1);
if(n==0 && m>0)
return ackerman(m-1,1);
if(m>0 && n>0)
return ackerman(m-1,ackerman(m,n-1));
}
void main()

Page 19

Data structures and Applications BCS304

int m,n;

printf(“Enter the value of m and n\n”);
scanf(“%d %d”,&m,&n);
printf(“%d”,ackerman(m,n));

Page 20

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
: DEPARTMENT OF COMPUTER SCIENCE & ENGG.
KSSEM) Session 2023-2024 (Odd Semester)

BCS304 Data Structures & Applications

Advanced Learners-1

S1 No. USN NAME SIGNATURE

1 | 1KG22CS083 | Peddinti Mohammad | F70g),)

Staff Incharge HM '

Department of Computer Science Engineering
K.5 School of Engineering & Management

Bangalore-560109 j

L

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
%2/ DEPARTMENT OF COMPUTER SCIENCE & ENGG.
KSSEM Session 2023-2024 (Odd Semester)
BCS304 Data Structures & Applications

Advances Learners-2

SI No. USN NAME SIGNATURE
1 | 1KG22CS078 |Padmashree M M w
2 1KG22CS080 |Pavan Kumar] %

3 | 1KG22CS083 |Peddinti Mohammad * | G2\ 4
4 1KG22CS087 |Prajwal koushik ¢

5 1KG22CS093 |Raghu Kisthannavar

6 1KG22CS094 [Rakesh V
7 | 1KG22CS095 |Rakshitha. N TAshitva - N

8 | 1KG22CS115 |Taanish M 2= -

9 | 1KG22CS119 |T Venkata Praneeth | Hrpp et if—

%}\L_LU = 2
aff Incharge Hg%)/ '
Department of Computer Science Engineering

K.5 School of Engineering & Manageinent
Bangalore-560109

S

[

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.
Attendance for Remedial Class
YEAR / SEMESTER - IiI -
COURSE TITLE - Data Structures and Application
COURSE CODE -BCS304
S.NO USN NAME \ Signature
! 1kG22CS066 Marineni Hansika =
2 1K.G22CS068 MohammadSami Sayyad ;
3 1KG22CS069 Mohith reddy k Q;{;&,,Q@glﬁ:
4 1KG22CS071 Meghana o
5 1KG22CS072 M.Dheekshith T
6 1KG22CS073 Nishanth R (R
7 1KG22CS074 Niswana N Swamy W
8 1KG22CS075 NITHISH KUMAR V
9 1K(G22CS079 P Devish Chowdary V- Geanr—
10 [K(G22CS081 PAVANTL Fowon T.
11 1KG22CS082 PAVAN U FPavan U
12 1KG22CS084 Pooja S Voo\a>—
13 1KG22CS088 Pranav Ramesh V0o
14 1KG22CS089 Prapul u j
15 1KG22CS090 Priya RK
16 [KG22CS093 RAGHU KISTHANNAVAR 2.
17 1KG22CS099 Ramya.P o
8 [KG22CS100 Rani %"7’
19 1KG22CS103 Sakesh P ¢ h -
20 1KG22CS 104 Sanjana B O oot B
21 [KG22CS105 Sanjay M D B .
22 KG22CS106 Sanjay S
23 1KG22CS107 Santosh Kumar nagur —Ho—
24 1KG22CS108 Saran R o ee-tpeaer
25 1KG22CS109 Shashank m goudar PN
26 1KG22CS110 Shashank D Urs _Jg:_
27 1KG22CS111 Sindhushree.k _O\d—
28 1KG22CS113 SUHAS S Ludog L
29 1KG22CS114 T kavya Tou?
30 1KG22CS116 TARUN.R =5 posunds
31 IKG22CS118 T Abhishek Hlidnoke
32 1KG22CS120 Toluchuru Haritha Mﬁ
33 1K(G22CS121 UDAYKIRAN oo~
3 1KG22CS124 Vismaya N
35 1KG22CS125 Yashwanth R -
36 1KG21CS020 Bhoomika P Desai Budndd
37 LIp Venkatachal S P
38 DI Rajesh PC Wr—
39 DIP Suhas Madhusudan Shandilya QS Ll na

Department of Comp'nnr Science Endmﬁnﬂnq
K.S Scheol of Engineering & Managet-«
Bangalore-560109

PO

K.S SCHOOL OF ENGINEERING AND MANAGEMENT

DEPARTMENT OF COMPUTER SCIENCE & ENGG.

f—— L LA
i |

Attendance for Remedial Class

YEAR /SEMESTER - III - 'B'

COURSE TITLE - Data Structures and Application
COURSE CODE -BCS304
S.NO USN NAME Signature
1 1kG22CS066 Marineni Hansika
8 1KG22CS075 Nithish Kumar V
13 1KG22CS088 Pranav Ramesh
14 1KG22CS089 Prapul u
17 1KG22CS099 Ramya.P
1KG22CS102 Sadhvika Godavarthi
22 1KG22CS106 Sanjay S
24 1KG22CS108 Saran R
26 1KG22CS110 Shashank D Urs
28 1KG22CS113 Suhas S
29 1KG22CS114 T kavya
30 1KG22CS116 Tarun R
31 1KG22CS118 T Abhishek
33 1KG22CS121 Udaykiran
35 1KG22CS125 Yashwanth R
37 Venkatachal S L
38 Rajesh PC
39 Suhas Madhusudan Shandilya E™ A
W HO‘D/
HOD —

Department of Computer Science Engincering
K.S Schoal of Engineering & Management

Bangalore-560109 —
o cm v

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT,BENGALURU-560 109

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING.

2023-24 ODD SEMSTER Il SEM B SEC

DATA STRUCTURES AND APPLICATION

BCS304
SL. UsN NAME OF THE EDURE
NO. STUDENT
1Al 1A2 | IA3 |Bestof2 do‘sv‘:’:i n| ASU | A2 A‘;‘; g T‘fi‘:sm Signature
25 25 25 50 35 25 25 25 50

| | 1KG22CS064 |Mahalakshmi P.S 15 14 25 40 20 25 25 25 I % _AA‘IE:

2 | 1KG22CS065 |MansiM 12 13 18 31 16 25 25 25 41 |0 B,

3 | 1KG22CS066 |Marineni Hansika 4 6 13 19 10 25 3 | M 1 | yades

4 | 1KG22C8067 |Marpuri Sowmya 10 18 25 43 2 25 25 25 7| M S enn

;| 1K622C3068 |MohammadSami Sayyad | 9 12 13 25 13 25 23 2 37 @_‘

6 | “1KG22CS069 |Mohith reddy k 8 15 9 2 12 23 23 23 35 .

7 | 1KG22CS070 |Monika k 13 15 2 37 19 25 25 25 | Yaow '

g | TKG22CS071 |Meghana 9 15 20 35 18 25 25 25 43)

o | 1KG22CS072 |M.Dheekshith 5 18 20 38 19 25 20 23 2 D

10 | 1KG22€5073 |Nishanth R s 14 9 2 12 23 23 23 s |

11| 1KG22C8074 |Niswana N Swamy AB 14 10 24 12 25 25 25 37

12 | 1KG22CS075 [NITHISH KUMAR V 2 2 18 20 10 23 23 23 3 [~—3N

13 | 1KG22€8076 |Niveda B 1 1 18 29 15 25 23 2 39 | mTvedo-8
14 | 1KG22CS077 |P Harshitha 12 15 AB 27 14 25 25 25 39 P Hes®hitha
15 | 1KG22CS078 |Padmashree M M 17 23 24 47 24 25 25 25 49 (Y

16 | 1KG22CS079 [P Devish Chowdary 5 14 1 25 13 2 2 2 5 P 0ot

17 1KG22CS080 |Pavan Kumar 14 24 21 45 23 25 25 25 48 M

18 | 1KG22cS081 |PAVANTL 6 19 18 37 19 23 23 23 2 | wan.T.L
Jo | 1KG22CS082 |PAVANU 6 12 16 28 14 25 25 25 3 | Tavaq.U
20 | 1KG22CS083 |Peddinti Mohammad 24 25 AB 49 25 25 25 25 50 K Wl L
o1 | 1KG22CS084 [Pooja 9 12 16 28 14 25 23 2% 3 \&o\e S |
2 | 1KG22CS085 [Poojitha S 12 12 19 31 16 25 25 25 4 | Ao d—
53 | 1KG22CS086 |PRAGNA PS 12 15 20 35 18 25 25 25 5 [PraginaVK]
24 | 1KG22CS087 |Prajwal koushik ¢ 17 21 25 46 23 2% 25 25 18 [Pajade.
55 | 1KG22CS088 |Pranav Ramesh 9 AB 14 23 12 25 23 2 36 '\7%—
26 | 1KG22CS089 |Prapul u AB 9 1l 20 10 20 20 20 30| gyopam
27 | 1KG22CS090 |Priya RK 9 13 19 32 16 25 23 2 0 | Roviage”,
ag | 1KG22CS091 [Punith B 1 16 AB 27 14 23 23 23 37
29 | 1KG22CS092 |RPRUDVI GANESH 1 19 19 38 19 25 25 25 1| R A
30 | 1KG220S093 E%GTZXNNAVAR s 20 18 38 19 2 24 2 43 Q&
31 | 1KG22CS094 |Rakesh v 17 25 24 49 25 25 25 25 50 ARG
32 | 1KG22CS095 |Rakshitha. N 135 | 215 | 2 45 23 25 25 25 48 W
33 | 1KG22CS096 |RAKSHITHAS 16 18 24 42 21 25 22 24 45
34 | 1KG22CS097 |Rakshitha.S 13 18 AB 3l 16 25 25 25 4
35 | 1KG22CS098 |Ramitha k 1 14 19 3 17 25 25 25 42
36 | 1KG22CS099 [RamyaP 6 s is 20 10 25 23 24 34
37 | 1KG22CS100 |Rani 7 18 20 38 19 25 23 24 43
33 | 1KG22CS101 |Rayan Nadeem 12 14 4 2 13 25 25 25 13 K2 XL
39 1KG22CS102 |Sadhvika godavarthi 11 AB 21 32 16 25 25 25 41 M—/ ’
40 | 1KG22CS103 |Sakesh P 6 18 1 29 15 23 25 24 39 | Saltl
41 | 1KG22CS104 [Sanjana B 1 15 14 29 15 25 25 25 90 |Qom@rar ¥
4 | 1KG22CSI05 |Sanjay MD 6 16 18 34 17 24 25 25 2 | oM

43 1KG22CS106 |Sanjay S AB 5 15 20 10 20 20 20 30 i
44 1KG22CS107 | Santosh Kumar nagur 5 14 19 33 17 23 23 23 40
45 1KG22CS108 (Saran R 3 10 12 22 11 | 20 20 20 31 W .
46 1KG22CS109 |Shashank m goudar 1 12 9 21 11 25 20 23 34 '%J\
47 1KG22CS110 [Shashank D Urs 8 8 13 21 11 25 25 25 26
48 1KG22CSI11 |Sindhushree k 9 12 12 24 12 25 23 24 36
49 1KG22CS!12 |Sowjanyak s 10 15 21 36 18 25 23 24 42 4‘%;&
so | 1KG22CS113 [SUHASS 8 1 16 27 14 25 25 25 » | £ /i
o | 1xG22csiia [Trava 5 7 13 | 20 10 25 23 2 o
52 1KG22CS115 |Taanish M 14 23 21 44 22 25 24 25 47
s3 | 1KG22CS116 [TARUNR 8 10 13 23 12 25 3 2 36 l’_;_{l«mg_ I,
sq | 1KG22CSIN7 |Tejaswini RM 10 15 s 30 15 25 24 25 w0 [Teyasudni Pv
55 1KG22CS118 |T Abhishek i 3 18 21 11 20 20 20 31 3 ™
56 1KG22CS119 gR\fNngiq‘-f{A 14 21 18 39 20 25 25 25 . 45 TV w_
57 1KG22CS120 [Toluchuru Haritha 9 13 16 29 15 25 25 25 40 "[:Mﬂa
sg | IKG22CSI21 |UDAYKIRAN 2 9 14 2 12 25 25 25 37 \J,dzﬂqf_
59 1KG22CS122 |Vandana Basavaraj Patil 13 16 20 36 18 25 25 25 43 ‘J
60 1KG22CS123 |Vinayak C 12 11 20 31 16 25 25 25 41
61 IKG22CS124 |Vismaya N 7 15 15 30 15 25 25 25 40
62 1KG22CS125 |Yashwanth R 3 3 18 21 11 22 22 22 33 @&_
¢3 | 1KG21CS020 |Bhoomika P Desai 9 19 1 30 15 25 25 25 40 Eﬂﬂ& @
64 |1KG23CS403 Rajesh PC 0 2 18 20 10 20 20 20 30)]
65 |1KG23CS405 | |Suhas M Shardilya 1 3 19 20 10 23 2 23 32 Sl H
66 |1KG23CS406 Venkatachal S 1 3 20 23 12 22 22 22 34
Faculty In-Charge HOD
~e¢ Enaineering
sianagement

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE

Branch : CS Semester : 3
SINO.| USN |BCS304
1 |1KG21CS020| 40
2 [1KG22CS001| 35
3 |1KG22CS002| 48
4 |1KG22CS003| 46
5 |[1KG22CS004| 43
6 [1KG22CS005| 38
7 |1KG22CS006| 50
8 |[1KG22CS007| 40
9 |1KG22CS008| 37
10 [1KG22CS009| 43
11 |1KG22CS010| 46
12 |1KG22CS011| 37
13 |1KG22CS012| 37
14 [1KG22CS013| 43
15 [1KG22CS014| 42
16 [1KG22CS015| 39
17 |1KG22CS016| 44
18 |1KG22CS017| 26
19 [1KG22CS018| 41
20 |1KG22CS019| 44
21 |1KG22CS020| 43
22 [1KG22CS021| 35
23 |1KG22CS022| 48
24 [1KG22CS023| ™ 44
25 |1KG22CS0%4| 36
26 |1KG226S025| 35
27 [1KG22CS026| 40
28 |1KG22CS027| 38
29 |1KG22CS028| 46
30 [1KG22CS029| 37
31 [1KG22CS030| 47
32 [1KG22CS031| 36
33 |1KG22CS032| 44
34 |1KG22CS033| 50
35 |1KG22CS034| 39
36 |1KG22CS035| 42

Report ID : VTUCOLDRAFT6602503831Aaf0KG

2024-03-26 10:08:18

Page 1 of 4

SINO.| USN |BCS304
37 |1KG22CS036| 34
38 |1KG22Cs037| 36
39 |1KG22CS038| 41
40 |1KG22CS039| 48
41 |1KG22CS040| 45
42 |1KG22CS041| 39
43 |1KG22CS042| 42
44 |1KG22CS043| 38
45 |1KG22CS044| 43
46 |1KG22CS045| 44
47 |1KG22CS046| 45
48 |1KG22CS047| 35
49 |1KG22CS048| 35
50 [1KG22CS049| 44
51 |1KG22CS050(42
52 |1KG22CS051| 36
53 |1KG22€S052| 36
54 |1KG22CS053| 31
55 |1KG22CS054| 40
56 |1KG22CS055| 44
57 |1KG22CS056| 44
58 [1KG22CS057| 45
59 |1KG22CS058| 42
60 |1KG22CS059| 36
61 |1KG22CS060| 39
62 |1KG22CS061| 38
63 |1KG22CS062| 41
64 |1KG22CS063| 35
65 |1KG22CS064| 45
66 |1KG22CS065| 41
67 |1KG22CS066| 34
68 |1KG22CS067| 47
69 |1KG22CS068| 37
70 |1KG22CS069| 35
71 |1KG22CS070| 44
72 |1KG22CS071| 43
73 |1KG22CS072| 42
74 |1KG22CS073| 35
75 |1KG22CS074| 37

Report ID : VTUCOLDRAFT660250383IAaf0OKG

2024-03-26 10:08:18

Page 2 of 4

SINO.|] USN [BCS304
76 |1KG22CS075| 33
77 |1KG22CS076| 39
78 |1KG22CS077| 39
79 [1KG22CS078| 49
80 |1KG22CS079| 35
81 |1KG22CS080| 48
82 [1KG22CS081| 42
83 |1KG22CS082| 39
84 [1KG22CS083| 50
85 |1KG22CS084| 38
86 [1KG22CS085| 41
87 |1KG22CS086| 43
88 |[1KG22CS087| 48
89 |1KG22CS088| 36
90 |1KG22CS089| 30
91 [1KG22CS090| 40
92 [1KG22CS091| 37
93 |1KG22CS092| 44
94 |1KG22CS093| 43
95 [1KG22CS094| 50
96 |1KG22CS095| 48
97 |1KG22CS096| 45
98 [1KG22CS097| 41
99 |1KG22CS098| 42
100 |1KG22CS099| 35
101 [1KG22CS100| 43"
102 |1KG22CS101{ 38
103 [1KG22CS102| 41
104 [1KG22CS103| 39
105 |1KG22CS104| 40
106 |1KG22CS105| 42
107 |1KG22CS106| 30
108 [1KG22CS107| 40
109 |1KG22CS108| 35
110 [1KG22CS109| 34
111 |1KG22CS110| 36
112 |1KG22CS111| 36
113 |[1KG22CS112| 42
114 |1KG22CS113| 39

Report ID : VTUCOLDRAFT660250383IAaf0KG

2024-03-26 10:08:18

Page 3 of 4

SINO. USN BCS304
115 |1KG22CS114| 34
116 |1KG22CS115| 47
117 |1KG22CS116| 36
118 |1KG22CS117| 40
119 |1KG22CS118| 31
120 |1KG22CS119| 45
121 |1KG22CS120| 40
122 |1KG22CS121| 37
123 |1KG22CS122| 43
124 |1KG22CS123| 41
125 |1KG22CS124| 40
126 |1KG22CS125| 33
127 |1KG23CS400| 38
128 [1KG23CS401| 31
129 |1KG23CS402| 38
130 [1KG23CS403| 30
131 |1KG23CS404| 33
132 |1KG23CS405| 32
133 |1KG23CS406| 34

—_—

Report ID ; W[ICOLDRAFT660250383IA11R}KG

2024-03-26 10:08:18

Page 4 of 4

DATA ST

K.S. SCHGuL OF ENGINEERING AND MANA

GEMENT, BENGALURU-%

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING.
2023-24 ODD SEMESTER - IIl SEM B SECTION

39

RUCTURES AND APPLICATIONS (BCS304D) - COURSE END SURVEY

A [Q3: The learning [Q4: The self-study [Q5: After this
[Q1: The course [(ii'n'f:netcye:srse material, (including reading) | course, you will be [Q?: This course has
Timestamp Email Address NAME OF THE STUDENT USN increased your |appropriate and was theor.y/practlcal requnred. forthis j able t? solve‘analyze given yoi enovel Signature
level of interest?] presented in a sessions were course w1l.l ensure | real life engineering understanding to take
relevant to the better achievement | problems related to | next level courses]
structured manner} course outcomes] | of course objectives] this course]

3-6-2024 15:24:34 naseemsayyad388@amail.co MohammadSami St lahmd 1KG22CS068 High High High High High High .
3-6-2024.15:25:07 nrajwalkoushik2?@gmai1,corr PRAJWAL KOUSHIK C 1KG22C5087 High High High High High High ‘% e
3-6-2024 15:25:41 pavankumar462004@gm_aii.c Pavankumar 1KG22CS080 High High High High High High
3.6-2024 15:27:59 prudviganeshmﬁ@_g_mail.mrr R PRUDVI GANESH 1KG22C5092 High High High High Medium Medium -~ | i2- =N
3-6-2024 15:28:21|t.praneetht 23@gmail.com TV PRANEETH 1KG22C8119 High High High High High High ’Uh-am.tt
3-6-2024 15:44:59 sanjumadala2424 mail.con|Sanjay M D 1KG22CS105 High High High High High High < ;
3.5-2024 15:50:45 prahnalnaidu?lé@gmail.cnm ‘Venkatachal s 1KG24C 5408 High High High High High High
3-5-2024 16:09:27 challaeswaraiah14379@gmal Marpuri Sowmya 1KG22CS067 High High High High High High
3-6-2024 16:12:22 som’anyaks%:g@@aﬂ.mm Sowjanya K8 1KG22CS112 High High High Medium High Hiah
3-6-2024 16:16:01 maha34493@gmail.com Mahalakshmi PS 1KG22C5064 High High High High — High High
3.6-2024 16:17:31 mohammadaslamé2818@am Peddinti Mohammad 1kg22cs083 High High - — High __High High High
3-6-2024 16:23:18 rakshitha.blossom@gmail.cof RAKSHITHA S 1KG22CS096 High High High High High High
3-6-2024 16:31:11 harithat2004@agmail.com Toluchuru Haritha 1KG22C65120 High High High High High High
2.6.2024 16.35.16|rakshithasubramanyaachara Rakshitha S 1KG22C8097 High High High High High High
3-6-2024 16:45:40 22pspragna@gmail.com PRAGNA PS 1KG22C5086 High High High High High High
3.6.2024 19:52:36|sanarathod717@grmail.com Sanjana B 1KG22CS104 Medium High High Medium High Medium Soomy e
3.5-2024 20:14:28|rayannad m7@gmail.com Rayan Nadeem 1KG22CS101 High High High High High Hi_gh =
3.6-2024 20:50:59 pavangowdatl0704@gmail.co PAVAN T L 1KG22CS081 High High High High High H!gh Fall
3-7-2024 12:03:30 bhoomikapdesai@amail.com Bhoomika P Desai 1KG21CS020 High High High High High Hfgh q_g_r
3.7-2024 12:22:14 mummaneedimeghanal@gm|Meghana 1KG22CST1 High High High High High Ha'gh
3-7-2024 12:48:51 vinay740ir@gmail.com VINAYAK C 1KG22C5123 High Medium High High Met‘iium High
3-7-2024 13:14:15 vandug426@gmail.com \andana Basavaraj Patil 1KG22CS5122 High High High Medium High ngh .
3.7-2024 15:35:50 sadhvikagodavarthi@gmail.c SADHVIKA GODAVARTH! 1KG22C5102 Medium High High High High Meqlum
3-7-2024 16:11:11 maranenihansika@gmail.corm M Hangika 1KG22CS066 High High High Hi_gh H!gh H!gh re
3-7-2024 17:08:08 padmashremag@gmail_mrr Padmashree 1KG22CS078 High High High H1gh th Htgh P S
3-7-2024 17:24:39 poujasampathoaos@gmall.cc Pooja S 1KG22C5084 Medium Medium Medium Meq:um Meﬁmm Me:_:l:um ”‘E"UD\ b |
3.7.2024 18:37.38 | nithishkumarv22122003@gm Nithish Kumar V 1kg22cs075 High High H'Egh Hggh H;Igh High A=<
3-7-2024 18:37:43 naveenvismya@gmail.com Vismaya N 124 High High Hl'gh Ha_gh High th -
3.7-2024 18:38:04 ramyapramym?s@gmaﬂ,mn Ramya.P 1KG22C5089 High High High H!gh H!gh H!gh RM,P
3-7-2024 18:40:02 rya52004@gmail.com Rakesh V 1KG22CS5094 High High H!gh High High High .
3-7-2024 18:40:28 sanjayshanthraju‘t%@gmail. Sanjay S 1KG22CS106 High Medium H!_gh Megllum Mer_!turn H{gh
3.7-2024 18:40:47 niswananarayanswamy@gmaNiswana N Swamy 1KG22CS074 High High ngh ngh ngh Hugfh ¢
3.7-2024 18:43:10 acchinarshithal5@gmail.cor P Harshitha 1KG22CS077 Medium Medium Medfum Medium Med!um I\J'Ied!um P Hanrh
3-7-2024 18:45:26 rakshithaZ?S@gmaime Rakshitha. N 1KG2205085 Medium Medium Medium Medium Medfum Medium : ~J
3-7-2024 18:52:16 priyark0809@gmail.com Priva RK 1KG22GS080 Medium Low ng pr Me;_:hum ng ']
3-7-2024 19:34:56 kavyanaidu3s9@gmail.com Kavya 1kg22cs114 High High Hfgh Hfgh H!gh High f"
3.7-2024 20:04:34 nreg910@gmail.com Nisharth R 1KG22C8073 Medium Medium High H!_gh H1gh Meqlum :
3-7-2024 20:24:12 raghukishtannavar2fi1122@g RAGHU KISTHANNAVAR 1KG22C5093 High High High H!gh H!gh Hl_gh o ;
3-9-2024 15:50:36 suhasmshandilya30@gmail.cf Suhas Madhusudan Shandilya 1 KG2022C540¢ Hiah High High Hygh HEgh th oAy poz
3-9-2024 15:57:24 rameshpraanav@gmail.com Pranav Ramash 1KG22C5088 High High Hi_gh H!gh H!gh H!gh
3-9-2024 15:57:27 tarunr200418@gmail.com TARUN R 1KG22C5116 High . High High Hu_:_|h Hrgh High
3-9-2024 15:57:37 mohitreddy9342@gmail.com Mohith reddy k 1KG22CS068 Medium Medium Low Medium Medium Low
2-9-2024 15:57°45 Nevishnananifamail com Nevish chowdary P 1KGR2CS079 Hiah Hiah Hiah Hiah Hiahk Hiah (PQ oua,

3-9-2024 15:57:52|taanishraj732004@gmail.com) Taanish M is922¢s115 High High High High High High

3-9-2024 15:58:03|a18172643@gmail.com T Abhishek 1kg22cs118 High High High High High High

3-9-2024 16:01:01 [ramithak2003@gmail.com Ramitha.K 1KG22CS098 High High High High High High

3-9-2024 16:02:18 |tgjaswinirm2004@gmail.com | Teiaswini RM 1KG22C3117 High =~ High High High High High

3-6-2024 16:10:06 |shashankmgoudar80@gmail.{Shashank m goudar 1kg22cs109 High High Medium High High Medium

3-9-2024 16:10:31 |hamsuniveda@gmail.com Niveda B 1KG22CS076 High High High High High High

3-8-2024 16:21:31|dheekshithnaidu001@gmail. dM.dheekshith 1kg22cs072 High High High High High High

3-9-2024 16:34:32|Karthikeyanmonika23@gmail| Monika k 1KG22CS070 High High High High High High

3-9-2024 16:36:54 | udaykiran990197@gmail.corr Udaykiran 1kg22cs121 High High High High High High

3-9-2024 17:36:53|sindhusk7019@amail.com |Sindhushree k 1KG22C58111 Medium Medium Medium Medium Medium Medium ‘4.
3-10-2024 20:59:07 |vijay.shriyan@gmail.com POQJITHA.S 1KG22CS085 High Medium High Medium High Medium -

3-11-2024 9:20:55 |pavanumesh221@gmail.com|Pavan u 1KG22CS082 High - High High High High High Tata ol

3-11-2024 9:22:41 |srisuhasgowda24@gmail.comSuhas S 1kg22cs113 High High High High High High
3-11-2024 10:45:01|sakesh28sk@gmail.com Sakesh p 1kg22¢s103 High High High High High High
3-11-2024 10:45:28|yashurockz01@amail.com |YASHWANTH R 1KG22CS125 High High High High High High
3-11-2024 11:46:31|rajeshnaidu2848@gmail.com |Rajesh pc 1KG23CS403 High High High High High High
3-11-2024 12:24:35|mansii7584@gmail.com Mansi M 1kg22cs065 High High High High High High AL~
3-11-2024 12:53:14|shashankdurs77@gmail.com|Shashank D Urs 1kg22cs110 High High High High High =) High 'ﬂl-»
3.12-2024 14:15:06 | prapul. 2004@gmail.com Prapul u 1KG22CS089 High High High High High High Xl
3-12-2024 17:27:40|ranicshinde123@gmail.comn_|Rani 1kg22cs100 High High High High High High 1=
3-12-2024 17:27:52|1808194saran@gmail.com [Saran 1KG22CS108 High High High High High High ey e —
3-12-2024 17:58:24 | poojashriyan0@gmail.com |POOJITHA.S 1KG22CS085 High Medium High Medium High High Pt -
3-12-2024 18:28:56 |punithb165@gmail.com Punith.B 1KG22CS091 High High High High High High A
3-15-2024 12:41:58|santoshkumarnaguri1@gmal Santosh Kumar nagur 1KG22C107 High High High High High High @_‘

£0 B High B Medium BFR Low
& A o R I et et
a&\\\)\‘:f A
Faculty In-Charge HOD
=== HOD ~—-

£
Department of Computer Science Enginsoring

K.S School of Frg;n&-rmu & Management

Bargalo re- \,39 109

S

T - == S

sjuapnjs
SpeAMO0) 3PNMINY 01

Surpesunod
/1591 Jo uonenfead ‘6

MmalA Jo yutod wexs /
22e18aA02 SNQE[IAS "8

uonedidde
1eanoeld qim
102[qns Sunjury °L

WO EIIUNW 0D
/ yalqns
a1} JO UON3BILASAI] "9

adpojmouy 32afqng °g

sjuopn)s 3uneAOIN
/ uondEBINUY §

Third Sem 'B' Section
/BCS304

Staff Feedback (2023-24) Odd Sem

pleoq jo
asT 9A1399]J2 / utedxdy/

yoea) 03 AUNQV €

uoneZIN) AWN
sse[D / Aienidund g

AN
o
y—(
0.
=
[Vp]
]
L
St
(=)
—
Ty oo
o =
< 3
-
58
o K
E 3
55 o
& '3
nS
ar
Mm
=
e
o O
B«
rO
et
Mm
£ E
mbn
<
<5y
4 O
[
p—
(=
o
=
[#]
W
A

uonesiuesio %
Suruueld 2A3RYF °1

SI. No.

Course Name & Code: Data Structures & Application

Faculty Name: Mrs. Bindhu K P
Class Strength:66

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

o]

i 0 | 0O

: I N| g
wlvlv|lo|lv|v|v|v|v|+|v|slv|v|v|v|[v]|v|v|v|w

Om

oo

i \ ; Nl
wlwjolo|v|vlv|v|v|s|v|s|v|[v|v|v|v]|v|v|wv|wv

N

ool

Nl
wlolelvlo|v|s|v|v|<|v|<tiv|v]|viv|[v]|v]v|v|wv

<o

A o|d}

Nl
Fio[wlo|w|wv|v|s|v|v|<|v|+|v|v|v|vvlv|v|wv|w

ol

o | 0

= ZAH
w|wfwlv|v|v|v|s|v|v|v|s|vle|lv|vlv]|o|<+|v]v

o [0

| |

Nl
o wfo|w|v|wlv|s|v|s|v]|s|v|vlvliv]|v|v|+v|v

olm

@ | 0

Nl
wlw|v|w|v|v|s|t|v|<|v|slolv|v|v|v|v|<|v]|wv

|

0|0

=y i N| g
wlololv|lv|v|lv|t|lv|t|v|v|v|lv]|viv|v|v|v|v|wv

| —

0| o

N
wlolo|lv|lvlv|v|v|wv|<s|v|<|[v|wv]|v|v]|v|v|v|wv|w

wn| =

) @ | o

Nl

wlw|lvlv|lolv|tlv|w|s|v|s|v|v]|v|v|v|wv|wv|wv|wv ~

[l

~

)

— | .|se

2| oS

wlolo|dlalm|g(n|o[n|w|lalo|=|n|m|s|v|v|~|o]|l(x|®

3344444444445.55555555T.|.m...

Bl o| >

(W10 2 e}

l<- %ﬁ?ﬁ)al

f Departm

H

0D

Department of Computer Science Engineering

K.S School of Engineering & Management

Bangalore-560109

~

23

