




































































Microcontrollers-BCS402  

Module - 1(Chapter-7): ARM PROCESSOR BASICS 

Evolution of ARM Processors: 
• 1985, First ARM (ARM1) 
• 1995, ARM7TDMI 

– Most successful ARM core 
– 3-stage pipeline, 120 Dhrystone MIPS 

• 1997, ARM9 
– 5-stage pipeline 
– Harvard (I+D cache), MMU (OS’s VM) 

• 1999, ARM10 
– 6-stage pipeline 
– VFP (Vector Float Point) (7-stage pipeline) 

• 2003, ARM11 
– 8-stage pipeline 

 
Versions of ARM Architecture 
• ARMv1 

• 26-bit address 
• ARMv2 

• 32-bit Multiplier/coprocessor 
• ARMv3 

• 32-bit address, cpsr/spsr, MMU, undef/abort Mode 
• ARMv4 

• Load/store (sign/half/byte), sys Mode 
• ARMv5 

• Superset ARMv4T (Thumb), extend Mul/DSP 
• ARMv6 

• Multiprocessor support instr., unaligned/endian/MMX 
• Others 

• StrongARM 
• ARM + Digital Semiconductor 
• Intel Patent 

• Xscale 
• 1GHz, V5TE 

• SC100 
• Security, Low Power 
• ARM7TDMI, MPU 

 
Philosophy of RISC design 
RISC is a design philosophy aimed at delivering simple but powerful instructions that 
execute within a single cycle at a high clock speed. The RISC philosophy concentrates 
on reducing the complexity of instructions performed by the hardware. The RISC 
philosophy provides greater flexibility and intelligence in software rather than 
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hardware. RISC design places greater functionality to the compiler rather than the 
hardware. 
The RISC philosophy is implemented with four major design rules: 

 

 
CISC RISC 

Greater 

Complexity 

 
 
 
 
 

 
Greater 

Complexity 

 

 

• Instruction 
– RISC processor have a Reduced number of instruction classes. These 

classes provide simple operations that can each execute in a single cycle. 
The compiler or programmer synthesizes complicated operations (e.g. a 
divide operation) by combining several simple instructions. Each 
instruction is of the same length to support pipelining. But CISC 
instructions are of variable length. 

• Pipeline 
– The processing of instructions is broken down into smaller units (stage) that 

can be executed in parallel by pipelines. There is no need for an instruction to 
be executed by a mini-program (microcode) as on CISC processor. 

• Register 
– RISC have a large General Purpose Registers (GPR) set. Any of these registers 

can hold either data or an address. But CISC processors have dedicated 
registers for specific purposes. 

• Load/store architecture 
– Only Load and Store instructions are used to transfer data between the 

register bank and external memory. 
– It separates memory access from data processing and allows multiple use 

of the data items held in the register bank without accessing memory 
each time. But in CISC design data processing can operate on the memory 
directly. 

The ARM Design Philosophy 
• There are a number of physical features that have driven the ARM processor 

design: 
• Low Power Consumption: Smallest Core; 
• Limited Memory: High code density; 
• Reduced area of the processor Die: Simple Hardware Executive Unit 
• Low cost memory devices 
• Built in H/w for debug technology 
• Total effective system performance. 

• These design rules allow a RISC processor to be simpler, and thus the core 
can operate at higher clock frequencies. 

• The ARM instruction set differs from the pure RISC definition in several ways 
– make the ARM suitable for embedded application 

» Variable cycle execution for certain instruction 
• Not every ARM instruction executes in a single cycle. Load/store 

depends on no.of registers being transferred. 
» Inline barrel shifter- leads to more complex instruction 
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• It is a hardware component that preprocesses one of the i/p 
registers before it is used by the instruction. This expands the 
capability of many instructions to improve the core performance 
and code density. 

» Thumb 16-bit instruction set 
• It is a second 16-bit instruction set that permits the ARM core to 

execute either 16 or 32-bit instructions 
• The Thumb instruction improve code density by about 30%. 

»  Conditional execution 
• Improves performance and code density by reducing Branch. 

» Enhanced instruction 
• DSP instruction were added to the standard ARM instruction-set 

to support fast 16x16-bit multiplier operations and saturation. 

Embedded System Hardware 
 

Embedded systems can control many different devices like small sensors, real-time 
control systems. Embedded systems are a combination of software and hardware 
components. Each component can be chosen or designed. 

 
• An Embedded system device can be separated into four main components: 

– ARM Processor: controls the embedded device. 
» An ARM processor comprises a core (the execution engine that processes 

instructions and manipulates data), plus the surrounding components 
(MMU and caches) that interface it with a bus. 

– Controllers: coordinate important functional blocks (e.g. interrupt and 
memory controllers) 

– Peripherals: Provide input output capability external to the chip. Peripherals 
are unique for each type of embedded device. 

– Bus: is used to communicate between different parts of the device. 

 

ARM Bus technology 
• Embedded systems use different bus technologies than those designed for x86 PC. 

– X86 uses PCI bus technology connects Video cards and HD controllers and 
hence known as external or off-chip 

– Embedded device use an on-chip bus which is internal to the chip 
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• A Bus has two architecture levels 
– The First is a physical level that covers the electrical characteristics and bus 

width (16, 32, or 64 bits). 
– The Second level is the protocol– the logical rules governing the 

communication between processor and peripheral. 
• ARM seldom implements the electrical characteristics of the bus, but it routinely 

specifies the bus protocol. 

AMBA Bus Protocol 
• AMBA Advanced Micro controller Bus Architecture 

– Introduced in 1996, it’s widely adopted as the on-chip bus architecture for 
ARM processors. 

– The first AMBA buses introduced were 
» ASB : ARM System Bus, and 
» APB : ARM Peripheral Bus 

– Later, ARM introduced another bus design 
» AHB: ARM High-performance Bus 

• Using AMBA, 
– peripheral designers can reuse the same design on multiple projects (with 

different processor architecture). 
– Plug-and-play interface improves availability and time to market for hardware 

developers. 
– 

• AHB 
– provides higher data throughput than ASB. Because 

» It uses a Centralized Multiplexed Bus Scheme (rather than ASB’s 
bi-direction bus). 

» This change allows the AHB bus to run at higher clock speed. 
» 64/128 bits width. 
» Two variations on the AHB bus 
» Multi-layer AHB, and 

• allows multiple active bus masters, 
» AHB-Lite: only one master 

Memory 
– Memory is necessary to have some form of memory to store and execute code. 
– For good memory characteristics compare : price, performance, and power 

consumption 
– Specific memory characteristics are hierarchy, width, and type 
– To double the speed for a required bandwidth, memory needs more power. 

 
Memory hierarchy 
• Cache 

– is used to speed up data transfer between Core and Main Memory (DRAM) 
– is physically located nearby the ARM processor core and it is the fastest 

memory 
– It provides an overall increase in performance, but does not support real time 

system response 
» Note that many small embedded systems do not require the benefit of a 

cache. 

• Main Memory 
– Is large and it is placed after Cache memory as it is slower than cache 
– Load store instructions access the main memory if the values are not in cache. 

• Secondary storage 
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– It is the largest and slowest memory and is placed away from the main 
memory. Width adaptive (e.g., 32-bit Core vs. 16-bit BUS) 

 

Width  
– The memory width is the number of bits the memory returns on each access 
– Typically they are 8,16,32,or 64 bits. 
– Memory width directly effects the overall performance and cost ratio 

 
Memory types 
• DRAM 

– the most commonly used RAM for devices; 
– Dynamic: need to have its storage cells refreshed and given a new electronic 

charge every few milliseconds, so you need to set up a DRAM controlr before 
using the memory. 

• SRAM 

– is faster than the more traditional DRAM (SRAM does not require a pause 
between data access). 

• SDRAM 

– is one of many subcategories of DRAM. 
– accessed pipelined, transferred in a burst. 

Peripherals 
• Embedded system that interact with the outside world need some form of peripheral 

device. 
– Peripherals range from a simple serial communication device to a more 

complex 802.11 wireless device. 
• All ARM peripherals are memory mapped – the programming interface is a set of 

memory addressed register. 
• Controllers are specialized peripherals that implement higher level of functionality 

within an embedded system. 
– Two important types of controllers are 

• Memory Controller 
• Interrupt Controller 

• Normal IC 
• Vectoring IC 

• Priority 
• Simple Interrupt Dispatch 

Memory Controllers: Connect different types of memory to the processor bus. 
– On power-up a memory controller is configured in hardware to allow certain 

memory device to be active. These memory devices allow the initialization code 
to be executed. 

– Some memory devices must be set up by software. 
• e.g. When using DRAM, you first have to set up the memory timings and 

refresh rate before it can be accessed. 
Interrupt controller: When a peripheral or device requires attention, 

– it raise an interrupt to the processor. 
• An interrupt controller 

– provides a programmable governing policy 
– There are two types of interrupt controller available for the ARM processor 
– Standard interrupt controller 

• Sends an interrupt signal; Can be programmed to ignore or mask an 
individual or set of devices. 

• It’s interrupt handler determines which device requiring service. 
– Vector interrupt controller (VIC) 

• Associate a “priority” and a “handler address” to each interrupt. 
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• Depending on its type, VIC will either call the standard interrupt exception 
handler (loading the handler address from VIC) or cause coreto jump to 
the handler for the device directly. 

 
Embedded System Software 
• An embedded system needs software to drive it. 
• There are four typical software components required to control an embedded device. 

» Each software component in the stack uses a higher level of abstraction 
to separate the code from the hardware device. 

– Initialization Code (e.g. Boot loader) 
– Operating System 
– Device Drivers 
– Application 

 

Initialization code (or boot code): is the first code executed on the board and is 
specific to a particular target or group of targets. It sets-up the minimum parts of the 
board before handing over the control to the operating system. 

– takes the processor from the reset state to a state where the operating system 
can run. 

» Configuring memory controller, caches 
» Initializing some devices 
» in a simple system the OS is replaced by a Debug Monitor or a simple 

scheduler. 
• Three phases of tasks before handing over the control to the operating system are: 

– Initial hardware configuration 
» Satisfy the requirements of the booted image 

• e.g. re-organization of the memory map 
– Diagnostics 

» Fault identification and isolation 

– Booting 
» Loading an image and handing control over to the image 
» The boot process may be complicated if the system must boot different 

operating systems or different versions of the same operating system. 
Example: Memory Reorganization 
• Start from ROM 

• Remap to RAM 

– easy IVT modification 
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Operating Systems 
• OS organizes the system resources 

– peripherals, memory, and processing time 
» With an OS controlling these resources, they can be efficiently used by 

different applications running within the OS environment. 
• ARM processors support over 50 OSes 

– Two main categories: RTOS, platform OS 
» RTOS: guarantee response times to event 
» platform OS: require MMU and tend to have secondary storage (for large 

application). 
• N.B., These two categories of OSes are not mutually exclusive. 

– ARM has developed a set of processor cores that specially target each category. 
Applications: 
• The OS schedules applications 

– code dedicated to handling a particular task. 
• ARM processors are found in numerous market segments, including 

– networking, automotive, mobile and consumer devices, mass storage, and 
imaging. 

• In contrast, ARM processors are not found in applications that require leading-edge 
high performance. 
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ARM core dataflow model 

 

 
• ARM core as functional units connected by data buses, 
• Arrows represent the flow of data. 
• lines represent the buses. 
• Boxes represent either an operation unit or a storage area 

• Data enters the processor core through the Data bus 

• data may be an instruction to execute or a data item. 
• Von Neumann implementation of the ARM— data items and instructions share the 

same bus. 
• Harvard implementations of the ARM use two different buses. 
• Instruction decoder translates instructions before they are executed 

• ARM processor, like all RISC processors, uses a load-store architecture. 
• This means it has two instruction types for transferring data in and out of the 

processor 

• load instructions copy data from memory to registers in the core 

• store data from registers to memory. 
• There are no data processing instructions that directly manipulate data in memory. 
• Data items are placed in the register file—a storage bank made up of 32-bit registers 

• The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values 
as they are read from memory and placed in a register. 

• ARM instructions typically have two source registers, Rn and Rm, and a single result 
or destination register, Rd. 

• Source operands are read from the register file using the internal buses A and B, 
respectively. 

• ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register 
values Rn and Rm from the A and B buses and computes a result. 

• Data processing instructions write the result in Rd directly to the register file. 
• Load and store instructions use the ALU to generate an address to be held in the 

address register and broadcast on the Address bus. 
• load instructions copy data from memory to registers in the core 

• store data from registers to memory. 
• There are no data processing instructions that directly manipulate data in memory. 
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• Data items are placed in the register file—a storage bank made up of 32-bit registers 

• The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values 
as they are read from memory and placed in a register. 

• ARM instructions typically have two source registers, Rn and Rm, and a single result 
or destination register, Rd. 

• Source operands are read from the register file using the internal buses A and B, 
respectively. 

•  ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register 
values Rn and Rm from the A and B buses and computes a result. 

• Data processing instructions write the result in Rd directly to the register file. 
• Load and store instructions use the ALU to generate an address to be held in the 

address register and broadcast on the Address bus. 
• An important feature of ARM is the Barrel Shifter. The register Rm can be pre- 

processed in this Barrel shifter, before it enters ALU. Thus Barrel shifter and ALU 
together can calculate a wide range of expressions and addresses.  

• After processing the result in Rd is written back to the register file using the result 
bus. 

• For load-store instructions the incrementer updates the address register before the 
core reads or writes the next register value from or to the next sequential memory 
location. 

• The processor keeps executing until an exception or interrupt changes the normal 
execution flow. 

REGISTERS 
• General-purpose registers hold either data or an address. 
• They are identified with the letter r prefixed to the register number. 
• Figure below shows the active registers available in user mode—a protected mode 

normally 

• The processor can operate in seven different modes 

• 18 active registers: 16 data registers and 2 processor status registers. 
• data registers - r0 to r15 

• Three registers assigned to a particular task or special function: r13, r14, and r15 

• Register r13 is traditionally used as the stack pointer (sp) and stores the head of the 
stack in the current processor mode. 

• Register r14 is called the link register (lr) and is where the core puts the return 
address whenever it calls a subroutine. 
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• Register r15 is the program counter (pc) and contains the address of the next 
instruction to be fetched by the processor. 

• registers r13 and r14 can also be used as general-purpose registers 

• OS assumes r13 is pointing to valid stack frame, not recommended as general 
purpose registers 

Register in ARM: 
• Orthogonal Registers (ref. VAX, PDP-11) 

– We say R0~R13 are orthogonal, for given instruction, if it can use R0, then 
others can also be used. 

– there are two program status registers: cpsr and spsr (the current and saved 
program status registers, respectively). 

PSRs 
– R13(sp), R14(lr), R15(pc) 

• CPSR/SPSR 

– Condition Codes: N, Z, C, V 
– Interruption mask: I(IRQ), F(FIQ) 
– Thumb Enable Bit 
– Mode(5-bit) 

 
Current Program Status Register: 
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• ARM core uses the cpsr to monitor and control internal operations. 
• cpsr is a dedicated 32-bit register and resides in the register file. 
• Figure shows the basic layout of a generic program status register. 
• Note that the shaded parts are reserved for future expansion. 
• The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and 

control 
• In current designs the extension and status fields are reserved for future use . 
• The control field contains the processor mode, state, and interrupt mask bits. 
• The flags field contains the condition flags. 
• Some ARM processor cores have extra bits allocated. 
• For example, the J bit, which can be found in the flags field, is only available on 

Jazelle-enabled processors, which execute 8-bit instructions 

 
Processor Modes 
• Processor mode determines which registers are active and the access rights to the 

cpsr register itself. 
• Each processor mode is either privileged or nonprivileged. 
• A privileged mode allows full read-write access to the cpsr. 
• Conversely, a nonprivileged mode only allows read access to the control field in the cpsr 

but still allows read-write access to the condition flags 

• There are seven processor modes in total: six privileged modes (abort, fast interrupt 
request, interrupt request, supervisor, system, and undefined) and one nonprivileged 
mode(user), 

• Processor enters abort mode when there is a failed attempt to access memory. 
• Fast interrupt request and interrupt request modes correspond to the two 

interrupt levels available on the ARM processor. 
• Supervisor mode is the mode that the processor is in after reset and is generally 

the mode that an operating system kernel operates in. 
• System mode is a special version of user mode that allows full read-write 

access to the cpsr. 
• Undefined mode is used when the processor encounters an instruction 

that is undefined or not supported by the implementation. 
• User mode is used for programs and applications. 
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Banked Registers 

 

• Figure shows all 37 registers in the register file. 
• 20 registers are hidden from a program at different times. 
• These registers are called banked registers and are identified by the shading in the 

diagram. 
• They are available only when the processor is in a particular mode. 
• For example, abort mode has banked registers r13_abt, r14_abt and spsr_abt. 
• Banked registers of a particular mode are denoted by an underline character post- 

fixed to the mode mnemonic or _mode. 
• Every processor mode except user mode can change mode by writing directly to the 

mode bits of the cpsr. 
• All processor modes except system mode have a set of associated banked registers 

that are a subset of the main 16 registers. 
• A banked register maps one-to-one onto a user mode register. 
• If you change processor mode, a banked register from the new mode will replace an 

existing register. 
• For example, when the processor is in the interrupt request mode, the instructions 

you execute still access registers named r13 and r14. 
 

• However, these registers are the banked registers r13_irq and r14_irq. 
•  The user mode registers r13_usr and r14_usr are not affected by the instruction 

referencing these registers. 
• A program still has normal access to the other registers r0 to r12. 
• processor mode can be changed by a program that writes directly to the cpsr (the 

processor core has to be in privileged mode) or by hardware when the core responds to 
an exception or interrupt. 

• The following exceptions and interrupts cause a mode change: reset, interrupt 
request, fast interrupt request, software interrupt, data abort, prefetch abort, 
and undefined instruction. 

• Exceptions and interrupts suspend the normal execution of sequential instructions 
and jump to a specific location 
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• The figure shows the core changing from user mode to interrupt request mode. 
• This change causes user registers r13 and r14 to be banked. 
• The user registers are replaced with registers r13_irq and r14_irq, respectively. 
• Note r14_irq contains the return address and r13_irq contains the stack pointer for 

interrupt request mode. 
• Figure also shows a new register appearing in interrupt request mode 

• The saved program status register (spsr), which stores the previous mode’s cpsr. 
• Can see in the diagram the cpsr being copied into spsr_irq. 
• To return back to user mode, a special return instruction is used that instructs the 

core to restore the original cpsr from the spsr_irq and bank in the user registers r13 
and r14. 

• Note that the spsr can only be modified and read in a privileged mode. There is 
no spsr available in user mode. 

• Another important feature to note is that the cpsr is not copied into the spsr when 
a mode change is forced due to a program writing directly to the cpsr. 

• The saving of the cpsr occurs only when an exception or interrupt is raised. 
• The table below shows that the current active processor mode occupies the five least 

significant bits of the cpsr. 
• When power is applied to the core, it starts in supervisor mode. 

List of various modes and the associated binary patterns. 
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The last column of the table gives the bit patterns that represent each of the 
processor modes in the cpsr. 

 
State and Instruction Sets 

 

 
 The state of the core determines which instruction set is being executed. 
 There are three instruction sets: ARM, Thumb, and Jazelle. 
 The ARM instruction set is only active when the processor is in ARM state. 
 Thumb instruction set is only active when the processor is in Thumb state. Once in 

Thumb state the processor is executing purely Thumb 16-bit instructions. 
 You cannot intermingle sequential ARM, Thumb, and Jazelle instructions. 
 Jazelle J and Thumb T bits in the cpsr reflect the state of the processor. 
 When both J and T bits are 0, the processor is in ARM state and executes ARM 

instructions. 
 This is the case when power is applied to the processor. 
 When the T bit is 1, then the processor is in Thumb state. 
  To change states the core executes a specialized branch instruction. Table 2.2 

compares the ARM and Thumb instruction set features. 
 ARM designers introduced a third instruction set called Jazelle. 
  Jazelle executes 8-bit instructions and is a hybrid mix of software and hardware 

designed to speed up the execution of Java bytecodes. 
 To execute Java bytecodes, you require the Jazelle technology plus a specially 

modified version of the Java virtual machine. 
 Note that the hardware portion of Jazelle only supports a subset of the Java 

bytecodes; the rest are emulated in software. 

 
Interrupt Masks 
• Interrupt masks are used to stop specific interrupt requests from interrupting the 

processor. 
• There are two interrupt request levels available on the ARM processor core— 

- interrupt request (IRQ) 
- fast interrupt request (FIQ). 
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• cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking of 
IRQ and FIQ. 

• The I bit masks IRQ when set to binary 1, F bit masks FIQ when set to binary 1. 
 

Condition Flags 
 

• Condition flags are updated by comparisons and the result of ALU operations that 
specify the S instruction suffix. 

• For example, if a SUBS subtract instruction results in a register value of zero, then 
the Z flag in the cpsr is set. This particular subtract instruction specifically updates 
the cpsr. 

• With processor cores that include the DSP extensions, the Q bit indicates if an 
overflow or saturation occurs. 

• The flag is “sticky” in the sense that the hardware only sets this flag. To clear the 
flag you need to write to the cpsr directly. 

• In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the 
core is in Jazelle state. 

• The J bit is not generally usable and is only available on some processor cores. 
• To take advantage of Jazelle, extra software has to be licensed from both ARM 

Limited and Sun Microsystems. 
• Most ARM instructions can be executed conditionally on the value of the condition 

flags. Table 2.4 lists the condition flags and a short description on what causes them 
to be set. 

• These flags are located in the most significant bits in the cpsr. These bits are used 
for conditional execution. 

 
• Figure 2.6 shows a typical value for the cpsr with both DSP extensions and Jazelle. 
• When a bit is a binary 1 we use a capital letter. 
• when a bit is a binary 0, we use a lowercase letter. 
• For the condition flags a capital letter shows that the flag has been set. 
• For interrupts a capital letter shows that an interrupt is disabled. 
• In the cpsr the C flag is the only condition flag set. 
• The rest nzvq flags are all clear. 
• The processor is in ARM state because neither the Jazelle j nor Thumb t bits are set. 
• IRQ interrupts are enabled, and FIQ interrupts are disabled. 
• Finally can see from the figure the processor is in supervisor (SVC) mode 

since the mode[4:0] is equal to binary 10011. 



MCES 21CS43 

CSE, KSSEM 16 

 

 

 
Conditional Execution 

 

 
• Conditional execution controls whether or not the core will execute an instruction. 
• Most instructions have a condition attribute. 
• It determines if the core will execute it based on the setting of the condition flags. 
• Prior to execution, the processor compares the condition attribute with the condition 

flags in the cpsr. 
• If they match, then the instruction is executed; otherwise the instruction is ignored. 

 
Pipeline 

 

 A pipeline is the mechanism a RISC processor uses to execute instructions. 
 Using a pipeline speeds up execution by fetching the next instruction while other 

instructions are being decoded and executed. 
Three-stage pipeline: 

■ Fetch loads an instruction from memory. 
■ Decode identifies the instruction to be executed. 
■ Execute processes the instruction and writes the result back to a register. 
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• EX: shows a sequence of three instructions being fetched, decoded, and executed 

by the processor. 
• Each instruction takes a single cycle to complete after the pipeline is filled. 
• The three instructions are placed into the pipeline sequentially. 
• In the first cycle the core fetches the ADD instruction from memory. 
• In the second cycle the core fetches the SUB instruction and decodes the ADD 

instruction. 
• In the third cycle, both the SUB and ADD instructions are moved along the pipeline. 
• ADD instruction is executed. 
• SUB instruction is decoded. 
• CMP instruction is fetched 
• This procedure is called filling the pipeline. 
• The pipeline allows the core to execute an instruction every cycle. 
• As pipeline length increases, the amount of work done at each stage is reduced, 

which allows the processor to attain a higher operating frequency. 
• In turn increases the performance. 
• System latency also increases because it takes more cycles to fill the pipeline before 

the core can execute an instruction. 
• Increased pipeline length also means there can be data dependency between certain 

stages. 
 

• Pipeline design for each ARM family differs. For example, The ARM9 core increases 
the pipeline length to five stages. 

• ARM9 adds a memory and write back stage, which allows the ARM9 to process on 
average 1.1 Dhrystone MIPS per MHz & increases throughput by around 13% 
compared with an ARM7. 

• The maximum core frequency attainable using an ARM9 is also higher. 
• ARM10 increases the pipeline length still further by adding a sixth stage 
• Average 1.3 Dhrystone MIPS per MHz, 
• 34% more throughput than an ARM7 processor core, but again at a higher latency 

cost. 
• Even though the ARM9 and ARM10 pipelines are different, they still use the same 

pipeline executing characteristics as an ARM7. 
• Code written for the ARM7 will execute on an ARM9 or ARM10 
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Pipeline Executing Characteristics 

 

• ARM pipeline has not processed an instruction until it passes completely through 
the execute stage. 

• For example, an ARM7 pipeline (with three stages) has executed an instruction only 
when the fourth instruction is fetched. 

• Figure 7.11 shows an instruction sequence on an ARM7 pipeline. 
• MSR instruction is used to enable IRQ interrupts. 
• Only occurs once the MSR instruction completes the execute stage of the pipeline. 
• It clears the I bit in the cpsr to enable the IRQ interrupts. 
• Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts 

are enabled. 
 

• Figure 7.12 illustrates the use of the pipeline and the program counter pc. 
•  In the execute stage, the pc always points to the address of the instruction plus 8 

bytes. 
• In other words, the pc always points to the address of the instruction being executed 

plus two instructions ahead. 
• when the pc is used for calculating a relative offset and is an architectural 

characteristic across all the pipelines. 
There are three other characteristics of the pipeline worth mentioning. 
- First, the execution of a branch instruction or branching by the direct modification 
of the pc causes the ARM core to flush its pipeline. 
- Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush 
by predicting possible branches and loading the new branch address prior to the 
execution of the instruction. 
- Third, an instruction in the execute stage will complete even though an interrupt 
has been raised. 
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Exceptions, Interrupts, and the Vector Table 
 

 
• When an exception or interrupt occurs, the processor sets the pc to a specific 

memory address. 
• Address is within a special address range called the vector table. 
• Entries in the vector table are instructions that branch to specific routines designed 

to handle a particular exception or interrupt. 
• Memory map address 0x00000000 is reserved for the vector table, a set of 32-bit 

words. 
• On some processors the vector table can be optionally located at a higher address 

in memory (starting at the offset 0xffff0000). 
• Operating systems such as Linux and Microsoft’s embedded products can take 

advantage of this feature. 
■ Reset is executed by the processor when power is applied. This instruction 
branches to the initialization code. 
■ Undefined instruction vector is used when the processor cannot decode an 
instruction. 
■ Software interrupt vector SWI instruction. The SWI instruction is frequently used 
as the mechanism to invoke an operating system routine. 
■ Prefetch abort vector occurs when the processor attempts to fetch an instruction 
from an address without the correct access permissions. The actual abort occurs in 
the decode stage. 
■ Data abort vector is similar to a prefetch abort but is raised when an instruction 
attempts to access data memory without the correct access permissions.  
■ Interrupt request vector is used by external hardware to interrupt the normal 
execution flow of the processor. It can only be raised if IRQs are not masked in the 
cpsr. 

Core Extensions 
• Improve performance, manage resources, and provide extra functionality and are 

designed to provide flexibility in handling particular applications. 
• Each ARM family has different extensions available 

• Three hardware extensions ARM wraps around the core are: 
 cache and tightly coupled memory 
 memory management 
 coprocessor interface. 

 
Cache and Tightly Coupled Memory 
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• Cache is a block of fast memory placed between main memory and the core. 
• With a cache the processor core can run for the majority of the time without having 

to wait for data from slow external memory. 
• single-level cache internal to the processor. 
• ARM has two forms of cache. First is found attached to the Von Neumann–style 

cores. 
• It combines both data and instruction into a single unified cache. 
• For simplicity, we have called the glue logic that connects the memory system to the 

AMBA bus logic and control 
• overall increase in performance but at the expense of predictable execution. 
• But for real-time systems it is paramount that code execution is deterministic— 

• The time taken for loading and storing instructions or data must be predictable. 
• This is achieved using a form of memory called tightly coupled memory (TCM). 
• TCMs appear as memory in the address map and can be accessed as fast memory. 
• An example of a processor with TCMs is shown in Figure 2.14. 
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• By combining both technologies, ARM processors can have both improved 
performance and predictable real-time response. Figure 2.15 shows an example core 
with a combination of caches and TCMs. 

 
Memory Management 
• Embedded systems often use multiple memory devices. 
•  It is usually necessary to have a method to help organize these devices and protect 

the system from applications trying to make inappropriate accesses to hardware. 
• This is achieved with the assistance of memory management hardware. 
• ARM cores have three different types of memory 

- no extensions providing no protection, 
- a memory protection unit (MPU) providing limited protection, 
- a memory management unit (MMU) providing full protection: 

■ Nonprotected memory is fixed and provides very little flexibility. 
• It is normally used for small, simple embedded systems that require no protection 

from rogue applications 
■ MPUs employ a simple system that uses a limited number of memory regions. 
• These regions are controlled with a set of special coprocessor registers, 
• each region is defined with specific access permissions. 
•  This type of memory management is used for systems that require memory 

protection but don’t have a complex memory map. 
■ MMUs are the most comprehensive memory management hardware available on the 
ARM. 
• The MMU uses a set of translation tables to provide fine-grained control over 

memory. 
• These tables are stored in main memory and provide a virtual-to-physical address 

map as well as access permissions. 
• MMUs are designed for more sophisticated platform operating systems that support 

multitasking 

Coprocessors 
• Coprocessors can be attached to the ARM processor. 
• More than one coprocessor can be added to the ARM core via the coprocessor 

interface. 
• The coprocessor can be accessed through a group of dedicated ARM instructions 

that provide a load-store type interface. 
• Consider, for example, coprocessor 15: The ARM processor uses coprocessor 15 

registers to control the cache, TCMs, and memory management. 
 

********* 
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MODULE -2 

ARM INSTRUCTIONS 

Introduction to the ARM Instruction Set: Data Processing Instructions , Branch Instructions,  

Software Interrupt Instructions, Program Status Register Instructions, Coprocessor 

Instructions, Loading Constants, Simple programming exercises. 

The most common and useful ARM instructions are introduced in this module. Different ARM 

architecture versions support different instructions. But new versions add more instructions 

and new versions are backward compatible. The following table has a complete list of ARM 

instructions available in ARMv5E ISA (Instruction Set Architecture). The ARM ISA column in 

the table lists the ISA revision (version) in which the instruction was introduced. 
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The processor operation is illustrated with PRE and POST-conditions. These conditions 

describe the registers and memory before and after the instruction is executed. 

Hexadecimal numbers are represented with the prefix of 0x 

Binary numbers are represented with the prefix of 0b. 
 

This refers to data_size - bits of memory starting at the given byte address. 

Ex: mem32[1024] is the 32-bit value starting at address 1KB. 

 
ARM instructions process the data present in the registers. Memory can be accessed 

only with LOAD and STORE instructions. ARM instructions can have 2 or 3 operands. 

 
Ex: The ADD instruction shown below adds the two values stored in the source registers 

r1 and r2. After adding the sum is stored in the destination register r3. 
 

Data Processing instructions 

The data processing instructions manipulate data within registers. There are 5 types 

of data processing instructions as listed below: 

- Move instructions 

- Arithmetic Instructions 

- Logical Instructions 

- Comparison Instructions 
- Multiply Instructions. 
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Most of the data processing instructions in ARM can process one of their operands 

using the barrel shifter. Suffix S is used  on a data processing instruction,  to update 

the flags in the cpsr. 

Move and logical operations update the carry flag C, negative flag N, and zero flag Z. 

• The carry flag is set from the result of the barrel shift as the last bit is shifted out. 

• The N flag is set to bit 31 of the result. 

• The Z flag is set if the result is zero 

2.1.1-MOVE Instructions: Move is the simplest ARM instruction. It copies N into a 

destination register Rd, where N is a register or immediate value. This instruction is 

useful for setting initial values and transferring data between registers. 

 

 
 

Barrel Shifter 

• In Example 2.1 a MOV instruction is shown where N is a simple register. But N can 
be more than just a register or immediate value. 

• It can also be a register Rm that has been pre-processed by the barrel shifter prior 
to being used by a data processing instruction. 

• Data processing instructions are processed within the arithmetic logic unit (ALU). 

• A unique and powerful feature of the ARM processor is the ability to shift the 32-bit 

binary pattern in one of the source registers left or right by a specific number of 

positions before it enters the ALU. 

• This shift increases the power and flexibility of many data processing operations. 

• There are data processing instructions that do not use the barrel shifter, for 

example, the MUL (multiply), CLZ (count leading zeros), and QADD (signed 

saturated 32-bit add) instructions. 

• Pre-processing or shift occurs within the cycle time of the instruction. This is 

particularly useful for loading constants into  a register and  achieving fast multiplies 

or division by a power of 2. 

• To illustrate the barrel shifter add a shift operation to the move instruction example. 
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• Register Rn enters the ALU without any pre-processing of registers. Figure 2.1 shows 

the data flow between the ALU and the barrel shifter. 
 

 

 
 

 

 
The example multiplies register r5 by four and then places the result into register r7. 

• The below diagram illustrates a logical shift left by one. If the contents of bit 0 are 

shifted to bit 1 then bit 0 is cleared. 

• The C flag is updated with the last bit shifted out of the register. 

• This is bit (32 − y) of the original value, where y is the shift amount. 

• When y is greater than one, then a shift by y positions is the same as a shift by one 

position executed y times. 
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The five different operations that can be used within the barrel shifter are as in the 

below table. 
 

• Table 3.3 lists the syntax for the different barrel shift operations available on data 

processing instructions. 

• The second operand N can be an immediate constant preceded by #, a register value 

Rm, or the value of Rm processed by a shift. 
 

 

ARITHMETIC instructions 

• The arithmetic instructions implement addition and subtraction of 32-bit signed 

and unsigned values. 



MC-BCS402 

CSE, KSSEM 27 

 

 

 

 
 

 

 

Using the Barrel Shifter with Arithmetic Instructions 

• The wide range of second operand shifts available on arithmetic and logical 

instructions is a very powerful feature of the ARM instruction set. 

• Example 3.7 illustrates the use of the inline barrel shifter with an arithmetic 

instruction. 

• The instruction multiplies the value stored in register r1 by three. 
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Logical Instructions 

• Logical instructions perform bitwise logical operations on the two source registers. 
 

 

• In this example, register r2 contains a binary pattern, where every binary 1 in r2 

clears a corresponding bit location in register r1. 

• This instruction is particularly useful when clearing status bits and is frequently 

used to change interrupt masks in the cpsr. 

• The logical instructions update the cpsr flags only if the S suffix is present. 

• These instructions can use barrel-shifted second operands in the same way as the 

arithmetic instructions. 



MC-BCS402 

CSE, KSSEM 29 

 

 

Comparison Instructions 

• The comparison instructions are used to compare or test a register with a 32-bit 

value. 

• They update the cpsr flag bits according to the result, but do not affect other 

registers. 

• After the bits have been set, the information can then be used to change program 

flow by using conditional execution. 

• S suffix is not necessary for comparison instructions to update the flags. 
 

 
• The CMP is effectively a subtract instruction with the result discarded; similarly the 

TST instruction is a logical AND operation, and TEQ is a logical exclusive OR 

operation. 

• For each, the results are discarded but the condition bits are updated in the cpsr. It 

is important to understand that comparison instructions only modify the conditional 

flags of the cpsr and do not affect the registers being compared. 
 

Multiply Instructions 

• The multiply instructions multiply the contents of a pair of registers and, depending 

upon the instruction, accumulate the results in with another register. 

• The long multiplies accumulate onto a pair of registers representing a 64-bit value. 

• The final result is placed in a destination register or a pair of registers. 
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• The number of cycles taken to execute a multiply instruction depends on the 

processor implementation. For some implementations the cycle timing also depends on 

the value in Rs. 
 

• The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64- 

bit result. 

• If the result is too large to fit in a single 32-bit register, then the result is placed in 

two registers labeled RdLo and RdHi. RdLo holds the lower 32 bits of the 64-bit 

result, and RdHi holds the higher 32 bits of the 64-bit result. 

• Example 8.12 shows an example of a long unsigned multiply instruction. 
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Branch Instructions 

• A branch instruction changes the flow of execution or is used to call a routine. This 

type of instruction allows programs to have subroutines, if-then-else structures, and 

loops. 

• The change of execution flow forces the program counter pc to point to a new 

address. The ARMv5E instruction set includes four different branch instructions. 
 

• The address label is stored in the instruction as a signed pc-relative offset and must 

be within approximately 32 MB of the branch instruction. 

• T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to 

Thumb state. 
 

• Branches are used to change execution flow. Most assemblers hide the details of a  

branch instruction encoding by using labels. 

• In the above example, forward and backward are the labels. 

• The branch labels are placed at the beginning of the line and are used to mark an 

address that can be used later by the assembler to calculate the branch offset. 
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The branch exchange (BX) instruction uses an absolute address stored in register 

Rm. It is mainly used to branch to and from the Thumb code. The T bit of cpsr is 

updated by the LSB of the branch register. Similarly the BLX instruction updates the 

T bit of the cpsr with LSB and also sets the link register with the return address. 

LOAD-STORE INSTRUCTIONS 

Load-store instructions transfer data between memory and processor registers. There 

are three types of load-store instructions: 

• Single-register Transfer. 
• Multiple-register Transfer. 
• Swap 

 
Single-Register Transfer: These instructions are used for moving a single data item in 

and out of a register. The data types supported are 

- Signed And Unsigned Words (32-bit). 

- Halfwords (16-bit). 

- Bytes. 

A few load-store single-register transfer instructions are shown below: 
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The first instruction loads a word from the address stored in register r1 and places 

it into register r0. The second instruction goes the other way by storing the contents 

of register r0 to the address contained in register r1. The offset from register r1 is 

zero. Register r1 is called the base address register. 

Single-Register Load-Store Addressing Modes: The ARM instruction set provides different 

modes for addressing memory. These modes incorporate one of the indexing methods: 

• Preindex With Writeback. 

• Preindex. 

• Postindex. 
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• Example 8.15 used a pre index method. This example shows how each indexing 

method effects the address held in register r1, as well as the data loaded into register 

r0. 

• Each instruction shows the result of the index method with the same pre-condition. 

• The addressing modes available with a particular load or store instruction depend 

on the instruction class. 

• Table 8.5 shows the addressing modes available for load and store of a 32-bit word 
or an unsigned byte. 

• A signed offset or register is denoted by “+/−”, identifying that it is either a positive 

or negative offset from the base address register Rn. The base address register is a 

pointer to a byte in memory, and the offset specifies a number of bytes. 

• Immediate means the address is calculated using the base address register and a 12- 

bit offset encoded in the instruction. 

• Register means the address is calculated using the base address register and a 

specific register’s contents. 

• Scaled means the address is calculated using the base address register and a barrel 
shift operation. 

• Table 8.6 provides an example of the different variations of the LDR instruction. 

• Table 8.7 shows the addressing modes available on load and store instructions using 

16-bit halfword or signed byte data. These operations cannot use the barrel shifter. 

There are no STRSB or STRSH instructions since STRH stores both a signed and 

unsigned halfword; similarly STRB stores signed and unsigned bytes. 

• Table 8.8 shows the variations for STRH instructions. 
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Multiple-Register Transfer 

• Load-store multiple instructions can transfer multiple registers between memory 

and the processor in a single instruction. The transfer occurs from a base address  

register Rn pointing into memory. 

• Multiple-register transfer instructions are more efficient than single-register transfers 

for moving blocks of data around memory and saving and restoring context and stacks. 

• Load-store multiple instructions can increase interrupt latency. ARM 

implementations do not usually accept interrupt instructions while they are 

executing. 

• For example, on an ARM7 a load multiple instruction takes 2 + Nt cycles, where N is 

the number of registers to load, t is the number of cycles required for each sequential 

access to memory. 

• If an interrupt has been raised, then it has no effect until the load-store multiple 

instruction is complete. Compilers, such as armcc, provide a switch to control the 
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maximum number of registers being transferred on a load-store, which limits the 

maximum interrupt latency. 

 

 
In table 8.9 N is the number of registers in the list of registers. Any subset of the current 

bank of registers can be transferred to memory or fetched from memory.The base 

register Rn determines the source or destination address for a load-store multiple 

instruction. This register can be optionally updated following the transfer. This occurs 

when register Rn is followed by the ‘!’ character, similar to the single register load-store 

using pre-index with writeback. 

 

 

Fig.8.3 shows a graphical representation. The Base register r0 points to memory  

address 0x80010 in the PRE-condition. Memory addresses 0x80010, 0x80014, and 

0x80018 contain the values 1,2, and 3 respectively. After the load multiple 

instruction executes registers r1, r2, and r3 contain these values as shown in 8.4.  

The base register r0 now points to memory address 0x8001c after the last loaded 

word. 
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For the same pre-conditions, use LDMIB-Load Multiple Increment before. The first word 

pointed by register r0 is ignored and register r1 is loaded from the next memory location 

as shown in fig-3.5. After execution, register r0 now points to the last loaded memory 

location. This is opposite to LDMIA example, which pointed to the next memory location. 
 

Table 8.10 shows a list of load-store multiple instruction pairs. If a store is used with base 

update, then the paired load instruction of the same number of registers will reload the 

data and restore the base address pointer. This is useful to store a group of registers 

temporarily and restore them later. 
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This routine relies on registers r9, r10, and r11 being set up before the code is 

executed. Registers r9 and r11 determine the data to be copied, and register r10 

points to the destination in memory for the data. LDMIA loads the data pointed to 

by register r9 into registers r0 to r7. It also updates r9 to point to the next block of 

data to be copied. 

STMIA copies the contents of registers r0 to r7 to the destination memory address 

pointed to by register r10. It also updates r10 to point to the next destination 

location. CMP and BNE compare pointers r9 and r11 to check whether the end of the 

block copy has been reached. If the block copy is complete, then the routine 
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finishes; else the loop repeats with the updated values of register r9 and r10. BNE is 

the branch instruction B with a condition mnemonic NE (not equal). 

Fig-8.6 shows the memory map of the block memory copy and how the routine 

moves through memory. This loop can transfer 32 bytes i.e. 8 words in two 

instructions, for a maximum possible throughput of 46 MB/second being 

transferred at 33 Mhz. 

 

Stack Operations 

• The ARM architecture uses the load-store multiple instructions to carry out stack 

operations. 

• The pop operation (removing data from stack) uses a load multiple instruction; 

similarly, the push operation (placing data onto the stack) uses a store multiple 

instruction. 

• When using a stack you have to decide whether the stack will grow up or down in 

memory. A stack is either ascending (A) or descending (D). Ascending stacks grow 

towards higher memory addresses; in contrast, descending stacks grow towards 

lower memory addresses. 

• When you use a full stack (F), the stack pointer sp points to an address that is the 

last used or full location (i.e., sp points to the last item on the stack). 

• In contrast, if you use an empty stack (E) the sp points to an address that is the first 

unused or empty location (i.e., it points after the last item on the stack). 
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When handling a checked stack 3 attributes have to be preserved, i.e. the stack base, 

the stack pointer, and the stack limit. Stack base is the starting address of the stack 

in memory. Stack pointer initially points to the stack base; as data is pushed onto 

the stack, the stack pointer descends memory and continuously pointsto the top of 

stack. If the stack pointer passes the stack limit, then a stack overflow error occurs.  

Ex: To check for stack overflow 

SUB sp, sp, #size 

CMP sp, r10 

BLLO_stack_overflow; condition. 
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SWAP INSTRUCTION 

• The swap instruction is a special case of a load-store instruction. It swaps the 

contents of memory with the contents of a register. 

• This instruction is an atomic operation—it reads and writes a location in the same 

bus operation, preventing any other instruction from reading or writing to that 

location until it completes. 

• This instruction is mainly useful for implementing semaphores and mutual 

exclusion in an operating system. It allows both a byte and a word swap. 
 

 

SOFTWARE INTERRUPT INSTRUCTION 

A software interrupt instruction (SWI) causes a software interrupt exception, which 

provides a mechanism for applications to call operating system routines. 
 

 
• When the processor executes an SWI instruction, it sets the program counter pc to 

the offset 0x8 in the vector table. The instruction also forces the processor mode to 

SVC, which allows an operating system routine to be called in a privileged mode. 

• Each SWI instruction has an associated SWI number, which is used to represent a 

particular function call or feature 
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• Since SWI instructions are used to call operating system routines, you need some 

form of parameter passing. This is achieved using registers. 

•  In this example, register r0 is used to pass the parameter 0x12. The return values 

are also passed back via registers. Code called the SWI handler is required to process 

the SWI call. 

•  The handler obtains the SWI number using the address of the executed instruction, 

which is calculated from the link register lr. 

• The SWI number is determined by SWI_Number = <SWI instruction> AND NOT (0xff 

000000). Here the SWI instruction is the actual 32-bit SWI instruction executed by 

the processor. 
 

PROGRAM STATUS REGISTER INSTRUCTIONS 

• The ARM instruction set provides two instructions to directly control a program 

status register (psr). 

• The MRS instruction transfers the contents of either the cpsr or spsr into a register; 
in the reverse direction. 

• The MSR instruction transfers the contents of a register into the cpsr or spsr. 

• Together these instructions are used to read and write the cpsr and spsr. 

• The syntax has a label called fields. This can be any combination of control (c), 
extension (x), status (s), and flags (f ). 

• These fields relate to particular byte regions in a psr, as shown in Figure 3.9. 
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Coprocessor Instructions 

• Coprocessor instructions are used to extend the instruction set. 

• A coprocessor can either provide additional computation capability or be used to 

control the memory subsystem including caches and memory management. 

• The coprocessor instructions include data processing, register transfer, and memory 

transfer instructions. 
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• In the syntax of the coprocessor instructions, the cp field represents the coprocessor 

number between p0 and p15. 

• The opcode fields describe the operation to take place on the coprocessor. 

• The Cn, Cm, and Cd fields describe registers within the coprocessor. 

•  The coprocessor operations and  registers  depend  on the specific coprocessor you 

are using. Coprocessor 15 (CP15) is reserved for system control purposes, such as 

memory management, write buffer control, cache control, and identification registers. 
 

LOADING CONSTANTS 

In ARM processor, there is no instruction to move a 32-bit constant into a register. 

But there are two pseudo instructions to move a 32-bit value into a register as below. 
 

• The first pseudo instruction writes a 32-bit constant to a register using whatever 

instructions are available. It defaults to a memory read if the constant cannot be 

encoded using other instructions. 

• The second pseudo instruction writes a relative address into a register, which will  

be encoded using a pc-relative expression. 
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• As can be seen above, there are alternatives to access memory, but they depend upon 

the constant you are trying to load. 

• Compilers and assemblers use clever techniques to avoid loading a constant from 

memory. 

• These tools have algorithms to find the optimal number of instructions required to 

generate a constant in a register and make extensive use of the barrel shifter. 

• If the tools cannot generate the constant by these methods, then it is loaded from 

memory. 

• The LDR pseudo instruction either inserts an MOV or MVN instruction to generate a 
value (if possible) or generates an LDR instruction with a pc-relative address to read 

the constant from a literal pool—a data area embedded within the code. 

• Table 8.12 shows two pseudo code conversions. The first conversion produces a 

simple MOV instruction; the second conversion produces a pc-relative load. 

• Another useful pseudo instruction is the ADR instruction, or address relative. This 

instruction places the address of the given label into register Rd, using a pc-relative 

add or subtract. 

• As you can see, there are alternatives to accessing memory, but they depend upon 

the constant you are trying to load. 

• Compilers and assemblers use clever techniques to avoid loading a constant from 

memory. 

• These tools have algorithms to find the optimal number of instructions required to 
generate a constant in a register and make extensive use of the barrel shifter. 

• If the tools cannot generate the constant by these methods, then it is loaded from 

memory. 

•  The LDR pseudo instruction either inserts an MOV or MVN instruction to generate 

a value (if possible) or generates an LDR instruction with a pc-relative address to 

read the constant from a literal pool—a data area embedded within the code. 

• Table 8.12 shows two pseudocode conversions. The first conversion produces a 

simple MOV instruction; the second conversion produces a pc-relative load. 

• Another useful pseudo instruction is the ADR instruction, or address relative. This 

instruction places the address of the given label into register Rd, using a pc-relative 

add or subtract. 

****************** 
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STRUCTURE ARRANGEMENT 

 The way you lay out a frequently used structure can have a significant impact on its 

performance and code density. 

 There are two issues concerning structures on the ARM: alignment of the structure 

entries and the overall size of the structure. 

 For architectures up to and including ARMv5TE, load and store instructions are only 

guaranteed to load and store values with address aligned to the size of the access width. 

Table 5.4 summarizes these restrictions. 
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However, packed structures are slow and inefficient to access. The compiler emulates 

unaligned load and store operations by using several aligned accesses with data 

operations to merge the results. 

Only use the  packed keyword where space is far more important than speed and you 
 

structure layout in memory. 

The exact layout of a structure in memory may depend on the compiler vendor and 

compiler version you use. 

In API (Application Programmer Interface) definitions it is often a good idea to insert any 

padding that you cannot get rid of into the structure manually. 

This way the structure layout is not ambiguous. It is easier to link code between compiler 

versions and compiler vendors if you stick to unambiguous structures. 
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The armcc in ADS1.1 will treat Bool as a one-byte type as it only uses the values 0 and 1. 

Bool will only take up 8 bits of space in a structure. 

However, gcc will treat Bool as a word and take up 32 bits of space in a structure. To 

avoid ambiguity it is best to avoid using enum types in structures used in the API to your 

code. 

Another consideration is the size of the structure and the offsets of elements within the 

structure. This problem is most acute when you are compiling for the Thumb instruction 

set. 

Thumb instructions are only 16 bits wide and so only allow for small element offsets 

from a structure base pointer. 

Table 5.5 shows the load and store base register offsets available in Thumb. 
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Therefore the compiler can only access an 8-bit structure element with a single instruction if it 

appears within the first 32 bytes of the structure. Similarly, single instructions can only access 

16-bit values in the first 64 bytes and 32-bit values in the first 128 bytes. Once you exceed these 

limits, structure accesses become inefficient. 
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PORTABILITY ISSUES 

Here is a summary of the issues you may encounter when porting C code to the ARM. 

 The char type. On the ARM, char is unsigned rather than signed as for many other 

processors. A common problem concerns loops that use a char loop counter i and the 

 0, they become infinite loops. In this situation, armcc produces 

a warning of unsigned comparison with zero. You should either use a compiler option to 

make char signed or change loop counters to type int. 

 The int type. Some older architectures use a 16-bit int, which may cause problems when 

-bit int type although this is rare nowadays. Note that expressions 

are promoted to an int type before evaluation. Therefore if i = -0x1000, the expression i 

== 0xF000 is true on a 16-bit machine but false on a 32- bit machine. 

 Unaligned data pointers. Some processors support the loading of short and int typed 

values from unaligned addresses. A C program may manipulate pointers directly so that 

they become unaligned, for example, by casting a char * to an int *. ARM architectures 

up to ARMv5TE do not support unaligned pointers. To detect them, run the program on 

an ARM with an alignment checking trap. For example, you can configure the ARM720T 

to data abort on an unaligned access. 

 Endian assumptions. C code may make assumptions about the endianness of a memory 

system, for example, by casting a char * to an int *. If you configure the ARM for the 

same endianness the code is expecting, then there is no issue. Otherwise, you must 

remove endian-dependent code sequences and replace them by endian-independent ones. 

 Function prototyping. The armcc compiler passes arguments narrow, that is, reduced to 

the range of the argument type. If functions are not prototyped correctly, then the function 

may return the wrong answer. Other compilers that pass arguments wide may give the 

correct answer even if the function prototype is incorrect. Always use ANSI prototypes. 

 Use of bit-fields. The layout of bits within a bit-field is implementation and endian 

dependent. If C code assumes that bits are laid out in a certain order, then the code is not 

portable. 

 Use of enumerations. Although enum is portable, different compilers allocate different 

numbers of bytes to an enum. The gcc compiler will always allocate four bytes to an 

enum type. The armcc compiler will only allocate one byte if the enum takes only eight- 
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you use enums in an API structure. 

Inline assembly. Using inline assembly in C code reduces portability between 

architectures. You should separate any inline assembly into small inlined functions that 

can easily be replaced. 

The volatile keyword. Use the volatile keyword on the type definitions of ARM 

memory-mapped peripheral locations. This keyword prevents the compiler from 

optimizing away the memory access. It also ensures that the compiler generates a data 

access of the correct type. For example, if you define a memory location as a volatile 

short type, then the compiler will access it using 16-bit load and store instructions 

LDRSH and STRH. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

bit values. Therefore you cross-link code and libraries between different compilers if 
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