K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCEAND ENGINEERING

Course File

BCS402 — Microcontrollers
IV SEM ‘A’ Sec (2023-24)

Faculty In-charge
Mrs. Meena G
Assistant Professor
Department of Computer Science and Engineering
K S School of Engineering & Management, Bangalore

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CONTENTS

Front sheet (Cover page)
Vision and Mission of the Department
Syllabus
Calendar of Events
Time table (Individual)
Student list
Lesson plan
Question Bank
CO-PO mapping
10.Assignments (3 Assignments)
11.Internal Question paper and scheme (Set-A & Set-B) (3 Internals) (in D€P+3
12.Previous year university question papers
13.Course Materials
- Notes/PPT/ lecture videos/ Materials/other contents related to the subject
14.Additional teaching aid with proof (TPS/flip class/programming etc) (IF ANY)
15.Slow learners and Advanced learners list (after the first internals)
16.Assignments Marks (3 Assignments)
17.Internal Test Marks (3 Internals)
18.Internal Final Marks

I
2.
3
4.
5.
6.
7.
&.
9.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT BENGALURU - 560109

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

“To produce quality Computer Science professional, possessing excellent technical knowledge,
skills, personality through education and research.”

MISSION

Department of Computer Science and Engineering shall,

M1:Provide good infrastructure and facilitate learning to become competent engineers who
meet global challenges.

M2:Encourages industry institute interaction to give an edge to the students.
M3:Facilitates experimental learning through interdisciplinary projects.

M4:Strengthen soft skill to address global challenges.

Program Educational Objectives (PEQOs)

Graduates of B.E. program in Computer Science and Engineering will be able to:

PEO1: Analyze Design, Simulate and Solve engineering problems to become an efficient Software
Engineer in diverse fields and will be a successful individual.

PEO2: Work effectively and efficiently as individual and/or in a team, exhibiting leadership qualities
with strong communicational skills along with professional and ethical values.

PEO3: Become an entrepreneur/inventor to design and develop product/system to meet social,
technical, environmental and business needs.

PEO4: Engage in learning leading to higher education and research.

Program Specific Outcomes (PSOs)

PSO1: Understand fundamental and advanced concepts in the core areas of Computer Science and
Engineering to analyze, design and implement the solutions for the real world problems.

PS02: Utilize modern technological innovations efficiently in various applications to work towards

the betterment of society and solve engineering problems.

MICROCONTROLLERS Semester 4
Course Code BCS402 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab Slots | Total Marks 100
Credits ' 04 Exam Hours 3
Examination nature (SEE) ' Theory '

Course Objectives:

CLO 1: Understand the fundamentals of ARM-based systems and basic architecture of CISC and RISC.
CLO 2: Familiarize with ARM programming modules along with registers, CPSR and Flags.

CLO 3: Develop ALP using various instructions to program the ARM controller.

CLO 4: Understand the Exceptions and Interrupt handling mechanism in Microcontrollers.

CLO 5: Discuss the ARM Firmware packages and Cache memory polices.

Teaching-Learning Process
These are sample Strategies, which teachers can use to accelerate the attainment of the various course

outcomes.

1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective
teaching methods could be adopted to attain the outcomes.

2. Use of Video/Animation to explain functioning of various concepts.

Encourage collaborative (Group Learning) Learning in the class.

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical
thinking.

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop design
thinking skills such as the ability to design, evaluate, generalize, and analyze information rather
than simply recall it.

6. Introduce Topics in manifold representations.

7. Show the different ways to solve the same problem with different circuits/logic and encourage the
students to come up with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps
improve the students understanding.

9. Use any of these methods: Chalk and board, Active Learning, Case Studies.

e

MODULE-1 | No. of Hours: 8

ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded
System Hardware, Embedded System Software.

ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions,
Interrupts, and the Vector Table, Core Extensions

Textbook 1: Chapter 1 - 1.1 to 1.4, Chapter 2 - 2.1 to 2.5
RBT:L1,L2,L3

MODULE-2 No. of Hours: 8

Introduction to the ARM Instruction Set: Data Processing Instructions, Branch Instructions, Software
Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading
Constants.

Textbook 1: Chapter 3 - 3.1 to 3.6
RBT: L1,L2,L3

MODULE-3 | No. of Hours:8

C Compilers and Optimization: Basic C Data Types, C Looping Structures, Register Allocation, Function
Calls, Pointer Aliasing, Portability Issues.

Textbook 1: Chapter 5.1 to 5.7 and 5.13
RBT:L1,L2,L3

@# 16032024 1

No. of Hours:8

Exception and Interrupt Handling: Exception handling, ARM processor exceptions and modes, vector
table, exception priorities, link register offsets, interrupts, assigning interrupts, interrupt latency, IRQ and FIQ
exceptions, basic interrupt stack design and implementation.

Firmware: Firmware and bootloader, ARM firmware suite, Red Hat redboot, Example: sandstone, sandstone
directory layout, sandstone code structure.

Textbook 1: Chapter 9.1 and 9.2, Chapter 10
RBT:L1,L2,13

No. of Hours:08

CACHES: The Memory Hierarchy and Cache Memory, Caches and Memory Management Units: CACHE
Architecture; Basic Architecture of a Cache Memory, Basic Operation of a Cache Controller, The
Relationship between Cache and Main Memory, Set Associativity, Write Buffers, Measuring Cache
Efficiency, CACHE POLICY: Write Policy—Writeback or Writethrough, Cache Line Replacement Policies,
Allocation Policy on a Cache Miss. Coprocessor 13 and caches.

Textbook 1: Chapter 12.1 to 12.4
RBT: L1,L2,L3

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

Using Keil software, observe the various Registers, Dump, CPSR, with a simple Assembly

e Pro

simulate ARM ALP for Data Transfer, Arithmetic and Logical operations
with the help of a suitable program).

nary numbers

Develop and

Simulate a program in C for ARM microcontroller using KE
.o /descending order using bubble sort.

Simulate a prog factorial of a number.

Simulate a program in C for troller to demonstrate casé conversion of characters

from upper to lowercase and lower to uppercase.

Module -4 and 5

m Demonstrate enabling and disabling

Demonstrate the handling of divide by zero, Invalid

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:
e Explain the ARM Architectural features and Instructions.

Develop programs using ARM instruction set for an ARM Microcontroller.

Explain C-Compiler Optimizations and portability issues in ARM Microcontroller.

Apply the concepts of Exceptions and Interrupt handling mechanisms in developing applications.

Demonstrate the role of Cache management and Firmware in Microcontrollers.

Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The
minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum
assing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the

@ 16032024 2

academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of
40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End
Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

® |PCC means practical portion integrated with the theory of the course.

e (CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.

® 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two Tests,
each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other assessment methods
mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after
covering 85-90% of the syllabus.

® Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory
component of IPCC (that is for 25 marks).

® The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

1. 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the
test to be conducted after the completion of all the laboratory sessions.

2. On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-
voce and marks shall be awarded on the same day.

3. The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of
the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments’ write-
ups are added and scaled down to 15 marks.

4. The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50
marks and scaled down to 10 marks.

5. Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of
IPCC for 25 marks.

6. The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the
course (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3

sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored by the student shall be proportionally scaled down to 50 Marks.
The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE
component only. Questions mentioned in the SEE paper may include questions from the practical
component.

Suggested Learning Resources:

Text Books:

1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier, Morgan
Kaufman publishers, 2008.

Reference Books:

1. Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication,
2019,

2. Insider’s Guide to the ARM7 based microcontrollers, Hitex Ltd.,1st edition, 2005

Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning
Assign the group task to demonstrate the Installation and working of Keil Software.

@# 16032024 3

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT

BENGALURU-560109

TENTATIVE CALENDAR OF EVENTS: IV EVEN SEMESTER (2023-2024)

SESSION: APRIL TO AUG 2024

Day

Week o
No, | Month Mon Tue Wed Thu Fri Sat e Activities
22* - Commencement of [V sem
1 APR | 22%* 23 24 25 27 | 5 |26-Election
27- Wednesday Time Table
APR/
2 {mav |l 291 30 213 4 |1-May Day
10 - Basava Jayanthi
3 A 6 7 8 9 1 1 5 11- Friday Time Table
17
4 | MAY | 13 14 15 |16 5
TA
5 | MAY [20T1|21T1 [22T1 |23 |24 | 25 | 6 |25-Monday Time Table
6 | MAY | 278V | 28AsD |29% FFBI| 30 | 31 5 |29 - First Faculty Feed Back
JUNE
7 | JUNE 3 4 5 6 7 8 6 |8- Monday Time Table
8 |JUNE | 10 11 12 |13 | 14 5
22 17- Bakrid
9 ININE 18 19 20 21 TA 5 22- Wednesday Time Table
10 | JUNE [24T2 |1 25T2 (2612 | 27 | 28 | 29 6 |29- Tuesday Time Table
11 | JuLy | 1BV | 2ASD [3*FFB2| 4 | 5 5 |3 - First Faculty Feed Back
12 | JuLY 8 9 ™6 |13- Friday Time Table
13 | JuLY 15 16 4 |17- Last Day of Moharam
14 | JuLy | 22 23 6 |27- Wednesday Time Table
JULY / i (D
15 |"alc | 2973 | 30T3 i ,{. 5
16 | AUG 6 3 |7* - Last Working day
Total No of Working Days : 81
Total Number of working days (Excluding holidays and Tests)=69
H Holiday Monday 13
BV Blue Book Verification Tuesday 14)< (Zu—o —})
T1,T2,T3 |Tests 1,2,3 . Wednesday 14 SIGNATURE OF PRINGIBAE—"
ASD A!lendance & Sessional Thursday 14 Or. Kpmfmmm
DlSplaV K § Schoal of Engineering and Wanagamant
DH Declared Holiday Friday 14 Bengaluru - 560 109
LT |Lab Test " Total 69

TA

Test attendance

@

K.S., SCHOOL OF ENGISEERING AND MANAGENEN]
DEPARTMENT O COMPUTERSCIENCE &

L)

T, BENGALURU-S6U10Y
CERING

NESSION: 2021.2024 (ENES SEMESITRR) :)

“ CEASS TIME TANLE
(= 1 2242024)
Case: IV OSF A Tarture I1ali: A4 Class Teacher: Mro. Mcens G
DAY 8.40-938 2Js-1030 W 1030 10.4% 1045 1140 1040128 123%-1.20 1.20 -2.10 2.10-3.00 3.00-3.50
. Mictovontrollees 1 ab [aich A DAS 0 NUMS MC Library
IR Andlvss & Design of Algoethan |sb (Ll - AT (1CS9A) 5 (NCS401) (DCS402)
= N .
. Micrxonuoliers | ab Batch A2 AbA e DM MC DBMS
LR UAY Analyyis & Design of Algoantiuns {3 aich - Al (Besdon) . (BCSA05A) (DCS402) (BCS403)
. DUMS ADA DMS B n Dutabase Manugement Systems Lah Baich - Al
WEDNESDAY (BCSAN3) (BCS401) (BCSI05A) (NBOKA0T) R Technwal witmg using LATEX Lub ach -A2
DMS ADA TEA DOMS MC 3 Dalabase Management Systems |ah Halch - A2
THURSDAY (LCSA0SA) (BOSIO1) DREAK (CS401) (BCSMANY) A Technical witmg using LATEX 1.ab Batch -Al
uny ADA [MC K)
. Tutorsal NSS 7 Yoga / Spons
TP 1I3UHKAON) (L SH01) (NBOKST) (CSA42) - e
SATURDAY AS PER CALENDAR OF EVENTS
X !‘.J“«T SURJECT SAME FACLLTY NAME
CODE
EH 401 Analysis & Devign of Algonihms Dr K Venkala Rao
$#C8a02 Mucrocontmtlees Mrs Meens G
B2 |Microconiraliens | ah (IWCS402) ::2 ;’:;"m““?u .
1354400 Dutalsave Musagerient Sysema Mrs Sougandhika Nasayan
HCSN401 Dutshase Mansgement Sysiems [ah ::: ?WV::::IL:::{"“.“
—_l_u‘,\lwa Anulyss & Design of Algonthms | ab :: :‘l;"::::‘:“
1K 'R403A Discrcte Mathematicsl Suucture (IICS405A) Mr Mohnar
W S4%0) Fechnical wiming using LA TEX (Lab) M3 Nugavers 3 Nimbal
V— Mrt R S Gecthansah
H0KAN7 Mology For | nnecrs Ms Rashmi
BUNIKAnR Liniverval hunan sahics coutse Mis Dakshaymi G R
NNSK49% Natuwa) Service Schieme (NSS) o e
Mrs Dak shayini G R
KP4V Phyvical | dustam ('} (Sports and Alhlelics) Mn Kavitha K S
—e M Aleena G
SYOK 439 Yues Mry Bindu K P
Jbeary P Mrs Sougandhida Narzyan

aof

.
hetels

bR '

pwmmirm

’%:h { ;@om

K.5 School (Ao ol

ol

s Bangalore-560109

- I
e ageinianm

K 8 School of Engineanng and
Benasluy - 560 108

K.S. SCHOOL OF ENGINEERING AND MANAGEMEN'1, BENGALURU-560109
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SESSION: 2023-2024(EVEN SEMESTER)

(w. e £:22/4/2024)
INDIVIDUAL TIME TABLE

Class: IV'A& B’ Faculty Name: Mrs. Meena G
DAY 8.40-9.35 | 9.35-10.30 | 10.30-10.45 10.45 -11.40 11.40-12.35 |12.35-1.20 1.20 -2.10 2.10-3.00 3.00-3.50
MONDAY Microcontrollers Lab Batch -Al P]:sii?(l:t(évl(;gﬁ ([I\\/;i) Plf;soéii?((\}VSgZ)
TUESDAY Microcontrollers Lab Batch -A2 ﬂ?gi;t(cvgz(;g(ﬁ (II://K; , P::scjel‘lzt((\;];rcks)
MC LUNCH]
WEDNESDAY Microcontrollers Lab Batch - Bl (IV A) BREAK Project Work Phase II(G3/G6) (18CSP83)
THURSDAY Microcontrollers Lab Batch - B2 (II://K/:\)
FRIDAY Sporst (IV A)
SATURDAY AS PER CALENDAR OF EVENTS
CODE SUBJECT Hours /Week
BCS402 Microcontrollers 4
BCS402 Microcontrollers Lab 6
BPEK459 Physical Education (PE) (Sports and Athletics) 2 Mrs. Meena G
18CSI85 Internship 1
18CSS84 Technical Seminar 1
18CSP83 Project Work Phase-II 4 15 l o

fg éﬂ(’ NUD [CRARNARA
h& bepartment erLompitterSeience Engineering & 4
Ti bl ordinator

ad : Prin or
K.S SchooHeadof the:Deparnfmentement PR Rgct
Bangalore-560109 X § School of Engineerihg an

Benaaluru - 560 tne

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU -560 019
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (EVEN SEMESTER)
IV Semester - A Student List

Sl USN Name of the Student
1 1KG22CS001 A G VISHNU

2 1KG22CS002 A PAVITHRA

3 1KG22CS003 ABHISHEK S

4 1KG22CS004 AKSHAYA K

5 1KG22CS005 ALLURU VENKATASAI JYOTHISHREDDY
6 1KG22CS006 AMISHA V

7 1KG22CS007 ANAGHA §

8 1KG22CS008 ANANTHANENI KRISHNA SAl
9 1KG22CS009 |ANCHAL R SSINGH

10 1KG22CS010 ANJANAR C

11 1KG22CS011 AVINASH NAYAK M

12 1KG22CS012 B M DARSHAN

13 1KG22CS013 B N RUSHITHA

14 1KG22CS014 B USHASREE

15 1KG22CS015 B V DEEKSHA JAIN

16 1KG22CS016 BHANU PRIYA K

17 1KG22CS017 BHARATHR N

18 1KG22CS018 BHAVYA D

19 1KG22CS019 BHEEMANNA
20 1KG22CS020 BOURISETTI CHAITANYA
21 1KG22CS021 BYNI PURUSHOTHAM
22 1KG22CS022 C GOWTHAM
23 1KG22CS023 C R ANAGHA
24 1KG22CS024 CHAITHANYA C
25 1KG22CS025 CHAITRA C
26 1KG22CS026 CHALLA PAVAN KUMAR
27 1KG22CS027 CHARAN KUMAR P K
28 1KG22CS028 CHARAN TR
29 1KG22CS029 D MAHESH
30 1KG22CS030 D SHREYAS
31 1KG22CS031 DANDA SHALINI
32 1KG22CS032 DASARI YASASWI NANDA
33 1KG22CS033 DEEKSHA D SHENOY)
34 1KG22CS034 DISHA S
35 1KG22CS035 DIYA AJITH KASABEKAR
36 1KG22CS036 E MADAN KUMAR

37 1KG22CS037 ENTURI LOKESH

38 1KG22CS038 |G SHARATH RAJ

39 1KG22CS039 G UHA
40 1KG22CS040 GAGANA SHREE S
41 1KG22CS041 GANASHREE C N

42 1KG22CS042 GOLLA KAVYA

43 1KG22CS043 GOLLA KUSUMA

44 1KG22CS044 GONUGUNTLA PRASHANTH KUMAR

45 1KG22CS045 GORTHI YASWANTH
46 1KG22CS046 HARISHR A

47 1KG22CS047 HARSHA CV

48 1KG22CS048 HARSHITHA C K

49 1KG22CS049 HEMANTH R

50 1KG22CS050 HRISHIKESH B §

51 1KG22CS051 JAJAPPAGARI SAI SREE
52 1KG22CS052 JAMPULA ABHILASH
53 1KG22CS053 K GAYATHRI

54 1KG22CS054 K PRAMOD KUMAR
55 1KG22CS055 KAVANA SM

56 1KG22CS056 KAVYA'S

57 1KG22CS057 KEERTHANA B

58 1KG22CS058 KOLLA BHAVANA

59 1KG22CS059 KOUSIKN

60 1KG22CS060 L R DHAYATRI

61 1KG22CS061 LIKHITHA P V

62 1KG22CS062 LIKITHA R

63 1KG22CS063 M SAIJA

64 1KG23CS400 GOWTHAM T™M

65 1KG23Cs401 IQRAA IMAN KHAN

66 1KG23CS402 MUDDASSIR AHMED | TORGUL

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU -560 019
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)
IV Semester - A Batch List

13:;. USN Name of the Student Batch
1 1KG22CS001 A G VISHNU
2 1KG22CS002 A PAVITHRA
3 1KG22CS003 ABHISHEK S
4 1KG22CS004 AKSHAYA K
5 1KG22CS005 ALLURU VENKATASAI JYOTHISHREDDY
6 1KG22CS006 AMISHA V e :
7 1KG22CS007 ANAGHA S
8 1KG22CS008 ANANTHANENI KRISHNA SAI
9 1KG22CS009 ANCHAL R S SINGH
10 1KG22CS010 ANJANARC
11 1KG22CS011 AVINASH NAYAK M
12 1KG22CS012 B M DARSHAN
13 1KG22CS013 B N RUSHITHA
14 1KG22CS014 B USHASREE
15 1KG22CS015 B V DEEKSHA JAIN
16 1KG22CS016 BHANU PRIYA K
17 1KG22CS017 BHARATHRN Batch Al
18 1KG22CS018 BHAVYA D
19 1KG22CS019 BHEEMANNA
20 1KG22CS020 BOURISETTI CHAITANYA
21 1KG22CS021 BYNI PURUSHOTHAM
22 1KG22CS022 C GOWTHAM
23 1KG22CS023 C R ANAGHA
24 1KG22CS024 CHAITHANYA C
25 1KG22CS025 CHAITRA C
26 1KG22CS026 CHALLA PAVAN KUMAR

27 1KG22CS027 |CHARAN KUMAR PK

28 1KG22CS028 |CHARAN TR

29 1KG22CS029 |D MAHESH

30 1KG22CS030 D SHREYAS

31 1KG22CS031 DANDA SHALINI

32 1KG22CS032 |DASARI YASASWI NANDA
33 1KG22CS033 DEEKSHA D SHENOY

34 1KG22CS034 [DISHA S

35 IKG22CS035 | DIYA AJITH KASABEKAR
36 1KG22CS036 |E MADAN KUMAR

37 1KG22CS037 |ENTURI LOKESH

38 1KG22CS038 G SHARATH RAJ

39 1KG22CS039 |G UHA

40 1KG22CS040 |GAGANA SHREE S

41 1KG22CS041 GANASHREE CN

42 1KG22CS042 GOLLA KAVYA

43 1KG22CS043 GOLLA KUSUMA

44 1KG22CS044 GONUGUNTLA PRASHANTH KUMAR
45 1KG22CS045 GORTHI YASWANTH

46 1KG22CS046 HARISHR A

47 1KG22CS047 |[HARSHACV

48 1KG22CS048 |[HARSHITHA CK

49 1KG22CS049 |HEMANTH R

50 1KG22CS050 HRISHIKESH B S Batch A2
51 1KG22CS051 JAJAPPAGARI SAl SREE
52 1KG22CS052 |[JAMPULA ABHILASH

53 1KG22CS053 K GAYATHRI

54 1KG22CS054 K PRAMOD KUMAR

55 1KG22CS055 KAVANA S M

56 1KG22CS056 KAVYA'S

57 1KG22CS057 KEERTHANA B

58 1KG22CS058 KOLLA BHAVANA

59 1KG22CS059 KOUSIK N

60 1KG22CS060 L R DHAYATRI

61 1KG22CS061 LIKHITHA P V

62 1KG22CS062 LIKITHA R

63 1KG22CS063 M SALA

64 1KG23CS400 GOWTHAM TM

65 1KG23Cs401 IQRAA IMAN KHAN

66 1KG23Cs402 .MUDDASSIR AHMED | TORGUL

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE& ENGINEERING

SESSION: 2023-2024 (EVEN SEMESTER)
LESSON PLAN
NAME OF THE STAFF : Meena G
COURSE CODE/TITLE : BCS402/MICROCONTROLLER
SEMESTER/YEAR : IV/II — A Section
Sl No. of Cumulative Delivery
: Topic to be covered Mode of Delivery | Teaching Aid . No. of Proposed Date Date
No. Periods .
| Periods
MODULE 1
ARM Embedded Systems: The _
1| RISC design philosophy L BB+LCD 1 1 22024 |20]2y
2 | The ARM Design Philosophy L+D BB4LCD 1 2 23/4/2024 Zbl] l)},
3 | Embedded System Hardware L+D BB+LCD 1 3 25/4/2024 129 |y (214
4 | Embedded System Software L+D BB+LCD 1 4 29/4/2024 |30 |24
5 ﬁzgli\'slt‘:’rls'ocessor Fundamentals: L+D BB+LCD 1 5 30/42024 |02 ’ 5 I Py Ly
Pl i
6 | Current Program Status Register L+D BB+LCD 1 6 02/05/2024 |55]2
7 | Exceptions, Interrupts, Pipeline L+D BB+LCD 1 7 03/05/2024 | /4| S |24t
The Vector Table , Core BB+LCD
: + 05/2024
8 Extension LD ! i U6,03/202) 7 / 5'/ 2("
07/05/2024 | ,/
10| Tutorial LD BB+LCD 4) ooz | 20161>Y
MODULE 2
Introduction to the ARM BB+LCD 0
11 | Instruction Set: Data Processing L+D 1 9 11/05/2024 Q- I S /Q—L/
Instructions -

- i —
Data Processing BB+LCD 1
i Instructions(continued) gD 10 13/05/2024 ;?‘ l 5 I Q«Lf
13 | Branch Instructions L+D BB+LCD 1 11 14/05/2024
14 | Branch [nstructions(continued) L+D BB+LCD 1 12 16/05/2024
15 | Software Interrupt Instructions L+D BB+LCD 1 13 17/05/2024
Program Status Register BB+LCD 1
16 | 1 structions L+D 14 23/05/2024 |9 Iy l 5 |ﬁ (Y
17 | Coprocessor Instructions L+D BB+LCD 1 15 24052024 |2 H]5] 24
18 | Loading Constants L+D BB+LCD 1 16 25/05/2024 [2515 , pA%)
Tutorial 27/05/2024
-~ s BB+LCD - 2eos0ze R 12 Ry
MODULE 3
C Compilers and Optimization: BB+LCD ‘
21 | 5o C Data Types L+D 1 17 300052024 | 6 6l2kH
22 | C Looping Structures L+D BB+LCD 1 18 31052024 |4 | 6|21
23 | C Looping Structures(continued) L+D BB+LCD 1 19 03/06/2024 (29 |b h_{u
24 | Register Allocation L+D BB+LCD 1 20 04062024 | 2516 | 3_ L
75 | Register Allocation(continued) L+D BB+LCD 1 21 06/06/2024 ‘:H L |euU
26 | Function Calls L+D BB+LCD 1 22 07/06/2024 ,zg[gl2y |
27 | Pointer Aliasing L+D BB+LCD 1 23 08/06/2024_ | 29/ 6] 24
28 | Portability Issues L+D BB+LCD 1 24 10/06/2024 ‘, 2L
. 11/06/2024
30 | Tutorial L+D BB+LCD 4 s ke Y ey
MODULE 4
Exception and Interrupt BB+LCD
Handling: Exception handling,) = }EL(
b ARM processor exceptions and 5D 1 25 14/06/2024 ’2 '
modes
{Vector table, exception priorities, BB+LCD
32 link register offsets L 1 26 18/06/2024 3 l '7")2’4
| 33 Interrupts, assigning interrupts, 1+D BB+LCD 1 27 20/06/2024 H] 7 ’al_f J

_ | interrupt latency, IRQ and FIQ
exceptions
34 | Firmware and bootloader L+D BB+LCD 28 21/06/2024 N [F]RY
35 | ARM firmware suite L+D BB+LCD 29 27/06/2024 5] F [R L
36 | Red Hat redboot L+D BB+LCD 30 28/06/2024 | 1) Z U
Example:sandstone,sandstone BB+LCD -y
4 directory layout L+D 31 29/06/2024 [3):} , AY
38 | Sandstone code structure. L+D BB+LCD 32 01/07/2024 [1563 [RY
02/07/2024 '
. m i ,
40 | Tutorial L+D BB+LCD 04/07/2024 | 19 ’:]Ll}?,"f
: MODULE 5
CACHES: The Memory 0 - } l
| N Hierarchy and Cache Memory L+D BB+LCD o 051072025 {6 F)2"{
Caches and Memory BB+LCD _
2 i L+D 34 08/07/2024 | | gl 2R 4
CACHE Architecture: Basic BB+LCD
Architecture of a Cache Memory,) e I Ly
e Basic Operation of a Cache s =2 080023 l q 2
Controller
The Relationship between Cache BB+LCD
44 | and Main Memory, Set L+D 36 09/07/2024 | P5):})2 Ly
Associativity
Write Buffers, Measuring Cache BB+LCD
45 | Bificiency L+D 37 11072024 | 23 ,:} Jou
CACHE POLICY: Write BB+LCD
46 | Policy—Writeback or L+D 38 12/07/2024 25‘) :I,I Z.Lf
Writethrough <. B
47 | Cache Line Replacement Policies L+D BB+LCD 39 13/07/2024 |25 | F|P 4
Allocation Policy on a Cache BB+LCD
48 Miss, Coprocessor 15 and caches . 40 15/07/2024 2'6 I :]" R Lf
50 [Tutorial L+D BB+LCD - 16/07/2024 | 23| oLy
T

BB+LCD 18/07/2024]
51 | Revision L+D - - (- —
07/08/2024
PRATICALS:
1. Using Keil software, observe \ A1:22/04/2024 |Al :%L] 44
52 | the various Registers, Dump, Practical D . 5
CPSR, with a simple Assembly A2:23/0412024 |22 |4 '2 4
Language Programs (ALP).
2. Develop and simulate ARM ALP A1:29/04/2024 Al X \"1 IZLf
for Data Transfer, Arithmetic and Practical D 6
Logical operations (Demonstrate A2:30/04/2024 1AL 3DlLf ’ﬂ/-{
with the help of a suitable program).
3. Df:ve'lop an ALP to multiply two A1:06/05/2024 Al:)_q l Y)211
16-bit binary numbers. Practical D 9 00
A2:07/05/2024 (B H|5| Y
i De"’t?;,op aHOALP to find tgle AL13/052024 [Al:13]S]2H
sum of first 10 integer numbers. Practical D 12 . ~
A2:14/052024 [F 14 |5 ley
f- Detvlelopuan ALP o find the ar27/052024 AR I51EG
argest/smallest number 1 an Practical D 15 .
array of 32 numbers. A2:28/05/2024 A2. ?Jl 5 \)3‘1
6. Develop an ALP to count the A1:03/06/2024 Al S |6J)
number of ones and zeros in two Practical D 18 ' .
consecutive memory locations. A2:04/06/2024 AL L)6 lﬁ.‘-—f
7. Simulate a program in C for
ARM microcontroller using KEIL A1:10/06/2024 Al PH lé l 2Y
to sort the numbers in Practical D 21 . | |
ascending/descending order using A2:11/06/2024 A 2 2 lélﬁH
bubble sort. i 4
3. Simulate a program in C for A1:01/07/2 A +124
ARM microcontroller to find Practical D 24 O/ OTI2025 ; l
L factorial of a number. A2:18/06/2024 AL P\Jl }‘\ 24

9. Simulate a program in C for
ARM microcontroller to . 15(F IR
demonstrate case conversion of Practical 3 27 AL0810772024. | 5] 15)\‘) &
characters from upper to A2:02/07/2024 1A2)3 J‘—'f]?J—{
lowercase and lower to
uppercase. L
10. Demonstrate enabling and A1:15/07/2024 | A2 9\);7 }gL,a
disabling of Interrupts in ARM. - 3 ' |
Practical 0 | a2000072024 A2 ()7]2
1}..D§monstrate the.handhng. of A1:22/07/2024 |24 I:}}?‘V
divide by zero, Invalid Operation Practical 3 33
and Overflow exceptions in A2:16/07/2024 |A2703) i (,2[,
ARM.
12. Practical Revision A1:05/08/2024 1] . —
Practical 3) A2:23/07/2024 | Ao 20 |7 /21
A2:06/08/2024
Week Remarks

Assignment 1

4™ Week — 14/05/2024

Assignment 2

9" Week- 18/07/2024

Mode of Assignment — Written Assignment

Total No. of Lecture Hours = 40
Total No. of Tutorial Hours =26
Total No. of Practical Hours = 20

In charge

Department of Compuje
K.S School of Engifice

Bangalom 560108

ey

Scierice Engineering

ring & Management

~d

o

IQAC Coordinator

<. FFar= V'L,,

Principal

Dr. K. RAMA NARASIMHA
Principal/Director

K S School of Engineering and Manaas+

Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)

QUESTION BANK - 1
Microcontroller (BCS402)

Module-1

—

A T AT o

—_ = e e e e
wv R W N = O

Explain RISC design philosophy.

Explain ARM design philosophy.

With neat sketch, Explain ARM processor based embedded system hardware.
Explain ARM processor based embedded system software.

Discuss ARM core dataflow model

Explain active registers available in user mode.

Explain current program status register (cpsr)

Explain processor modes for ARM processor.

Summarize complete ARM register set.

. Discuss pipeline concept of ARM processor.

. Write a note on exception, interrupt and the vector table.

. Discuss the core extensions for ARM processor

. Differentiate Microprocessor and Microcontroller with diagram.
. Differentiate CISC and RISC processors

. Differentiate Harvard and Von-Neumann architecture.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)

QUESTION BANK -2
Microcontroller (BCS402)

Module-2

fam—

. Determine the operation of data processing instructions of ARM with an example.
Illustrate the working of Barrel shifter with example.
Demonstrate the working of Branch Instructions with example.

Identify the working of Load and Store instructions with examples.

Make use of software interrupt instruction to solve the given problem
PRE cpsr = nzcVqifT_USER
pc = Ox00GDE000

Vr = Ox003Fffrf i Ir = rld
r0 - 0x12

0x00008000 SWI Ox4b

6. Determine the operation of program status register instructions with an example.
7. lustrate coprocessor instructions with syntax and example.

8. Interpret loading constants with syntax.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)

QUESTION BANK -3
Microcontroller (BCS402)

Module-3

T R A

Illustrate the importance of basic C data types with an example.
Interpret C looping structure with an example.

Write a note on register allocation.

Write a note function call.

Ilustrate pointer aliasing with an example

Interpret structure arrangement with an example.

Discuss various Portability issues in detail.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)

QUESTION BANK - 4
Microcontroller (BCS402)

Module-4

I. Define exception and interrupt. Explain different types of exception.
2. Interpret the concept of exception handling.
3. Outline the following
i. Assigning interrupts

ii. Interrupt latency

iii. IRQ and FIQ exceptions

iv. Basic interrupt stack design and implementation
Define firmware. Explain firmware execution flow in detail.
Discuss various firmware suites in detail.

Interpret Sandstone Directory Layout.

= o woA

Illustrate Sandstone Code Structure/ Sandstone execution flow.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SESSION: 2023-2024 (EVEN SEMESTER)

QUESTION BANK -5
Microcontroller (BCS402)

Module-5

1. Define cache. Explain memory hierarchy and cache memory.
2. QOutline the following
i. Relationship that cache has between processor core and main memory
1. Caches and memory management units
3. Discuss cache architecture.
4. Interpret the following
1. Basic architecture of a cache memory
ii. Basic operation of a cache controller
iil. The relationship between cache and main memory
5. Explain the process of thrashing with suitable diagram.
6. Illustrate set associativity.
7. Summarize the following
1. Write buffers
ii. Measuring cache efficiency
iii. Coprocessor 15 and caches

8. Explain in detail various cache policies.

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CESSION @ 2023- 244 [EveN seM)

CO-PO Mapping

Course: Microcontroller
Type: Integrated Professional Core Course

| Course Code: BCS402

No of Hours
Theory ‘ Practical/F.ield
Tutorials Work/Allied Total/Week Total hours of Pedagogy
(Lecture Class) -

Activities ,
3 0 2 5 40T+20P

Marks '
CIE SEE Total Credits

50 50 100 4

Aim/Objectives of the Course
1. Understand the fundamentals of ARM-based systems and basic architecture of CISC and RISC.

. Familiarize with ARM programming modules along with registers, CPSR and Flags.

2

3. Develop ALP using various instructions to program the ARM controller.

4. Understand the Exceptions and Interrupt handling mechanism in Microcontrollers.
5

. Discuss the ARM Firmware packages and Cache memory polices.

Course Learning Outcomes
After completing the course, the students will be able to

CO1 | Explain the ARM Architectural features and Instructions. Applying (K3)
CO2 | Develop programs using ARM instruction set for an ARM Microcontroller Applying (K3)
Co3 E)fplain C-Compiler Optimizations and portability issues in ARM | Applying (K3)
Microcontroller
CO4 Apply t%le concepts _of Exceptions and Interrupt handling mechanisms in Applying (K3)
developing applications.
CO5 Demonstrate the role of Cache management and Firmware in Avplving (K3
Microcontrollers. pplying (K3)
Syllabus Content
Module 1:ARM Embedded Systems: The RISC design philosophy, The ARM CO1
Design Philosophy, Embedded System Hardware, Embedded System Software. ohr
S
ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline,
Exceptions, Interrupts, and the Vector Table, Core Extensions PO1-3
PO2-2
PO3-2
LO: At the end of this session the student will be able to PO5-3
1. Understand the design philosophy of ARM processor. PO6-2
2. Understand the fundamentals of ARM processor PO12-2

PSO1-3

PSO2-2
Module 2: Introduction to the ARM Instruction Set: Data Processing Instructions, CO2
Branch Instructions, Software Interrupt Instructions, Program Status Register
Instructions, Coprocessor Instructions, Loading Constants. 8 hrs.
LO:At the end of this session the student will be able to PO1-3
1. Understand the different instructions and registers of ARM processor. PQO2-2
2. Demonstrate the programming using ARM instructions. ggg'g
PO6-2
PO12-2
PSO1-3
PSO2-2
CO3
. 8hrs
Module 3: C Compilers and Optimization: Basic C Data Types, C Looping
Structures, Register Allocation, Function Calls, Pointer Aliasing, Portability Issues. PO1-3
PO2-3
. . . PO3-2
LO: At the end of this session the student will be able to PO5-3
1. Explain the operation of assembly code and their programs. PO6-2
2. Understand the execution of Assembly language programs. gg(l)%-g
PSO2-2
Module 4:Exception and Interrupt Handling: Exception handling, ARM processor CO4
exceptions and modes, vector table, exception priorities, link register offsets, interrupts,
assigning interrupts, interrupt latency, IRQ and FIQ exceptions, basic interrupt stack 8 hrs
design and implementation.
Firmware: Firmware and bootloader, ARM firmware suite, Red Hat redboot, ggé:g
Example: sandstone, sandstone directory layout, sandstone code structure. PO3-3
LO: At the end of this session the student will be able to 11382:;
1. Understand the concept exception handling.
. . PO12-2
2. Explain about ARM processor exceptions and modes. PSO1-3
3. Understand the working of firmware. PSO2-2
Module 5:CACHES: The Memory Hierarchy and Cache Memory, Caches and COs
Memory Management Units: CACHE Architecture: Basic Architecture of a Cache
Memory, Basic Operation of a Cache Controller, The Relationship between Cache and 8 hrs
Main Memory, Set Associativity, Write Buffers, Measuring Cache Efficiency, CACHE
POLICY: Write Policy—Writeback or Writethrough, Cache Line Replacement PO1-3
PO2-3

Policies, Allocation Policy on a Cache Miss. Coprocessor 15 and caches

e The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

1. 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for
the test to be conducted after the completion of all the laboratory sessions.

2. On completion of every experiment/program in the laboratory, the students shall be evaluated including
viva-voce and marks shall be awarded on the same day. 1\

3. The CIE marks awarded in the case of the Practical component shall be based on the continuous
evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all
experiments’ write-ups are added and scaled down to 15 marks.

4. The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted
for 50 marks and scaled down to 10 marks.

5 Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory
component of [PCC for 25 marks.

6. The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the
IPCC.

SEE for IPCC
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers
for the course (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a

maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored by the student shall be proportionally scaled down to 50 Marks.
The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will

have a CIE component only. Questions mentioned in the SEE paper may include questions from the
practical component Semester End Exam (SEE): 100 marks (students have to answer all main questions)

which will be reduced to 50 Marks.

CO to PO Mapping
PO1: Science and engineering Knowledge PO7: Environment and Society
PO2: Problem Analysis PO8: Ethics
PO3: Design & Development PO9: Individual & Team Work
PO4:Investigations of Complex Problems P0O10: Communication
PO5: Modern Tool Usage PO11: Project Mgmt. & Finance
POG6: Engineer & Society PO12: Lifelong Learning

PSO1: Understand fundamental and advanced concepts in the core areas of Computer Science and
Engineering to analyze, design and implement the solutions for the real world problems.

PSO2: Utilize modern technological innovations efficiently in various applications to work

towards the betterment of society and solve engineering problems

L

PO3-2
LO: At the end of this session the student will be able to PO5-3
1. Understands the basics of Memory Hierarchy and Cache Memory. PO6-2
2. Understands theCACHE Architecture. PO12-2
3. Understand CACHE policy. PSO1-3
4. Understand The Relationship between Cache and Main Memory. PSO2-2
Text Books

1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier, Morgan
Kaufman publishers, 2008.

Reference Books

|. Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication,
2019.

2. TInsider’s Guide to the ARM7 based microcontrollers, Hitex Ltd.,1st edition, 2005

Additional Reading

David E. Culler, Jaswinder Pal Singh, Anoop Gupta: Parallel Computer Architecture, A Hardware /
Software Approach, Morgan Kaufman, 1999

Useful Websites
https://nptel.ac.in/courses/117/104/117104072/

https://nptel.ac.in/courses/117/106/117106112/
https://WWW.COUrsera.org

Useful Journals
e American Journal of Embedded System and Applications.

e Journal of Microprocessors and Microsystems: Embedded Hardware Design (MICPRO)

Teaching and Learning Methods
1. Lecture class: 40 hrs
2. Practical: 20 hrs

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be
deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if
the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous
Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

o IPCC means practical portion integrated with the theory of the course.

e CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.

e 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two
Tests, each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other assessment
methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the
second test after covering 85-90% of the syllabus.

e Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the
theory component of IPCC (that is for 25 marks).

coO
PO | pO1 | PO2 | PO3 | PO4 | POS Poé¢ | PO7 | POS | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2
K-
BCS402
level
CcO1 K3 3 2 2 |- 3 2 |- -- -- -- -- 2 3 2
Cc02 K3 3 2 3 |- 3 2 |- -- -- - - 2 3 2
Cco3 K3 3 3 2 |- 3 2 |- -- -- -- -- 2 3 2
CO4 K3 3 3 3 |- 3 2 |- -- - -- -- 2 3 2
CcO5 K3 3 3 2 |- 3 2 |- -- -- -- -- 2 3 2
%{ | C\m/ RN
Cotrse In chiarge D CSE IQAC Coordinator Principal
Department of Com w*cr Smence Engineering Dr. K. RAMA NARASIMKEA
K.S School of Enginecring & Management Principal/Director .
Bangalore-560109 y K S School of Engineering and Managem

Bengaluru - 560 108

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (EVEN SEMESTER)

FIRST ASSIGNMENT
Degree : B.E . Semester : IV
Branch : CSE Course Code : BCS402
Course Title : Microcontrollers Max Marks : 25
Date : o 20/05/2024 Last Date : 25/05/2024

for submission

0 K- CO
No. Questions Marks Level mapping
a) Demonstrate the embedded system hardware and software
with a neat block diagram.
1 | b) Illustrate pipeline process of ARM processor with an 5 Apll)g’illg Co1
example.
¢) Interpret Exception, interrupt and vector table.
a) Draw and Explain data flow diagram (architectural diagram)
of ARM. Understanding
2 5 K2 CO1
b) Explain CPSR in detail with neat diagram.
a) Summarize complete ARM register set.
b) Differentiate the following
i. Microprocessor and Microcontroller Understanding
- . s 5 K2 COo1
1. Harvard and Von-Neumann architecture with diagram.
ii. CiSC and RISC processors.
¢) Discuss the core extensions for ARM processor
a) Design an assembly program to find the sum of first 10
integer numbers. Applying
& b) With a neat diagram and shift instructions, illustrate the & K3 £oe
working of Barrel shifter with example.
B a) Determine the working of data Processing instructions of
ARM with syntax and examples. Applying a2
2 b) Demonstrate the working of branch instructions with syntax S K3 <
and example,

V. A——
/ /.u‘:_hh AT
- b g v
7 ll I -"'\’10 Hoby o
« * A 4) .
ours charge Departme[ﬁycff Computer Sctence Engineering

K.S Schbe! of Engineering & Management
Bangalore-560109

T N S T T O 3¢

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION: 2023-2024 (EVEN SEMESTER)

SECOND ASSIGNMENT
Degree : BE Semester N A4
Branch : CSE Course Code : BCS402
Course Title ¢ Microcontrollers Max Marks : 2§
Date . : 26/06/2024 Last Date : 03/07/2024

for submission

0 K- CO
No Questions Marks Level mapping
a) Identify the working of Load and Store instructions with
examples.
b) Make use of software interrupt instruction to solve the given
roblem .
P 5 Apll’g“'g co2
PRE cpsT = nzcVgitT_USER
pc = OxD0008000
Tr = Ox0DIFFIfe 3 1r=rlg
rd = 0xi2
0x00008000 SWI Ox45
a) Determine the operation of program status register
instructions with an example. : Applying
2 R i . . 5 K3 co2
b) Hlustrate caprocessor instructions with syntax and example.
c¢) Interpret loading constants with syntax.
a) Write a note on register allocation.
- .) Understanding
3 | b) Write a note function c4ll. 5 K2 CcoO3
¢) Discuss various Portability issues in detail.
a) Illustrate the importance of basic C data types with an
Applying
4 | example. 5 K3 CcO3
b) Interpret C looping structure with an example. '
a) Illustrate pointer aliasing with an example. Applying
S . 5 K3 Cco3
b) Interpret structure arrangement with an example.

ofirs cHarge HO

HOD

Departmant of Computer Science Engineering
K QS Srhanl nf Fnoineearinn & Mananemont

USN

BCS402

Model Question Paper-1/2 with effect from 2023-24

L]] |

Fourth Semester B.E. Degree Examination
Subject Title: Microcontrollers

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
*Bloom’s
Module -1 Taxonomy Marks
Level
Q0! |a L2 10
Mention the ditference between 1. Microctroller and Microprocessor Marks
2. RISC and CISC
b L2 10
Explain the architecture of an ARM embedded device with the help of neat Marks
diagram,
OR
Q02 |a L2 10
Explain in detail about Current Program Status Register (CPSR). Marks
b | With a neat diagram, explain embedded system Hardware. L2 10
mp Marks
Module-2
Q.03 [a i) 10
Explain different arithmetic instructions in ARM processor with an example. Marks
b L2 10
Explain single register load store addressing mode syntax, table, index mode with Marks
| an example.
OR
Q04 |a L2 10
Explain barrel shifter instructions in ARM with suitable examples. Marks
b L2 10
Explain different Logical instructions in ARM processor with an example. Marks
Module-3
Q.05 | a | Explain code optimization, profiling and cycle counting. L3 10
[Marks
b | Write a C program that prints the square of the integers between 0 to 9 using L3 10
functions and explain how to convert this C function to an assembly function Marks
with command.
OR
Q.06 | a | Discuss how registers are allocated to optimize the program. L3 10
Marks
[b | Develop an ALP to find the sum of first 10 integer numbers. L3 10
Marks
Module-4
Q.07 |a | With a neat diagram explain ARM processor exceptions and modes. L2 10
Marks
b | Explain assigning interrupts and interrupt latency. L2 10
Marks
! OR
| Q.08 |a | Briefly explain what happens when an IRQ and FIQ exception is raised with an L2 10
ARM processor. Marks

Page 01 of 02

BCS402

| b | Explain firmware execution flow and explain Red Hat RedBoot. L2 10
i Marks
Module-5 '
Q.09 | a | Explain the basic architecture of cache memory. L2 | 10
Marks
b | Explain how main memory maps to a cache memory. L2 10
Marks
OR
Q.10 [a | With a neat block diagram explain associative cache. L2 10
f p— Marks
b L2 10
! Briefly explain cache line replacement policies. Marks

*Bloom’s Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be

attained by every bit of questions.

Page 02 of 02

USN

Time: 3 hrs.

VK] &2 L'C Sll

Microcontrollers’_

» 8

BCS402

Fourth Semester B.E./B.Tech. Degree Examir_lafiﬁﬁ, June/July 2024

Note: 1. Answer any FIVE full questions, chaosiug_d_‘YE full question from each module.

2. M : Marks , L: Bloom’s level , C: Course outcomes.

Max. Marks: 100

Module—1, * (a4lM| L C
Q.1 | a. | Explain the architecture of an arm embedded device with a neat diagram. 10| L2 | CO1
b. | How are monitor and control internal operations performed in ARM core? 10| L2 | CO1
Explain in brief.
“OR b 4
Q.2 | a. | Explain memory management,in ARM core. Compare cache-and tightly | 10 | L2 | CO1
coupled memory. -
b. | Explain mechanism applied by ARM core to handle, exception, interrupts | 10 | L2 Cco1
using different vector table: A%,
Module — 2
Q.3 | a. | Examine data processing instructions requirement in the manipulation of | 10 | L2 | CO2
data register? Explain in brief data processing instructions.
b. | Explain with examples the following 32-bitsinstruction of ARN processor 10| L2 | CO2
i) CMN _“ii)MLA _iii) MRS iv) BIC"V) LDR. '
N OR
Q.4 | a. | Explainithe following with example 10 ‘ L2 | CO2
|| 1) Stock operation 11) Swap instructions. -t
b. | Explain Branch insfructions in ARM with suitable example. Demonstrate 10] L2 | CO2
Branch instruct usage flow of execution with an example program. (" !
D [
Module-3 . .
Q.5 | a. | How registers are allocated to optimize the program? Develop an assembly | 10 L2 | CO3
level program to find'the sum of first to integer numbers. 4 X
b. | How complier handles a “for loop” with variable number of iferations N | 10 | L2 Cco3
and loop controlling with an example. ' \
. OR ,
Q.6 | a. | Explain.the following terms with an appropriate example: 10 | L2 | CO3
i) Pointer Aliasing ii) Portability issues.
b. | How function calling is efficiently used by ARM through APCS with an | 10 | L2 | CO3
example program.
Module — 4
Q.7 |a. | Explain ARM progessors exception and modes with a neat diagram. 10| L2 | CO4
b | Explain exception priorities and link register offset. 10 | L2 | CO4
OR
Q.8 | a. | List ARM firmware suite features, Explain firmware execution flow and 10 | L2 | CO4
Red Hat Boot.
b. | Explain IRQ and Fir exception, also to enable and disable IRQ and FIQ 10 | L2 | CO4
interrupts.
Module —35
0.9 | u. | Explain basic architecture of cache memory. 10 | L2 | COS
| b. | Explain process involved in main memory mapping to 2 cache memory. 10| L2 | COS
OR
Q.10 [a. | Explain with didgram set associative cache. How are efficiency is | 10 | L2 | COS
measured?
| b. | Briefly explain cache line replacement policies with an example. 10| L2 | COS

* k% kk

Microcontrollers-BCS402

Module - 1(Chapter-7): ARM PROCESSOR BASICS

Evolution of ARM Processors:

1985, First ARM (ARM1)
1995, ARM7TDMI

— Most successful ARM core

— 3-stage pipeline, 120 Dhrystone MIPS
1997, ARM9

— 5-stage pipeline

— Harvard (I+D cache), MMU (0S’s VM)
1999, ARM10

— 6-stage pipeline

— VFP (Vector Float Point) (7-stage pipeline)
2003, ARM11

— 8-stage pipeline

Versions of ARM Architecture

ARMv1
* 26-bitaddress
ARMv2
* 32-bit Multiplier/coprocessor
ARMv3
» 32-bitaddress, cpsr/spsr, MMU, undef/abort Mode
ARMv4
* Load/store (sign/half/byte), sys Mode
ARMv5
* Superset ARMv4T (Thumb), extend Mul/DSP
ARMv6
* Multiprocessor support instr., unaligned /endian/MMX
* Others
StrongARM
« ARM + Digital Semiconductor
* Intel Patent
Xscale
* 1GHz, V5TE
SC100
* Security, Low Power
« ARM7TDMI, MPU

Philosophy of RISC design

RISC is a design philosophy aimed at delivering simple but powerful instructions that
execute within a single cycle at a high clock speed. The RISC philosophy concentrates
on reducing the complexity of instructions performed by the hardware. The RISC
philosophy provides greater flexibility and intelligence in software rather than

MCES 21CS43

hardware. RISC design places greater functionality to the compiler rather than the
hardware.
The RISC philosophy is implemented with four major design rules:

CisC RISC
Compiler » Greater (- Compiler
Complexity
Code Code
Generation Generation
Greater
Complexity Processor Processor

* Instruction
— RISC processor have a Reduced number of instruction classes. These
classes provide simple operations that can each execute in a single cycle.
The compiler or programmer synthesizes complicated operations (e.g. a
divide operation) by combining several simple instructions. Each
instruction is of the same length to support pipelining. But CISC
instructions are of variable length.
* Pipeline
— The processing of instructions is broken down into smaller units (stage) that
can be executed in parallel by pipelines. There is no need for an instruction to
be executed by a mini-program (microcode) as on CISC processor.
* Register
— RISC have alarge General Purpose Registers (GPR) set. Any of these registers
can hold either data or an address. But CISC processors have dedicated
registers for specific purposes.
* Load/store architecture

— Only Load and Store instructions are used to transfer data between the
register bank and external memory.

— Itseparates memory access from data processing and allows multiple use
of the data items held in the register bank without accessing memory
each time. Butin CISC design data processing can operate on the memory
directly.

The ARM Design Philosophy
* There are a number of physical features that have driven the ARM processor
design:
* Low Power Consumption: Smallest Core;
* Limited Memory: High code density;
* Reduced area of the processor Die: Simple Hardware Executive Unit
* Low cost memory devices
* Built in H/w for debug technology
* Total effective system performance.
* These design rules allow a RISC processor to be simpler, and thus the core
can operate at higher clock frequencies.

« The ARM instruction set differs from the pure RISC definition in several ways
— make the ARM suitable for embedded application
» Variable cycle execution for certain instruction
* Notevery ARM instruction executes in a single cycle. Load/store
depends on no.of registers being transferred.
» Inline barrel shifter- leads to more complex instruction

CSE, KSSEM 2

MCES 21CS43

« It is a hardware component that preprocesses one of the i/p
registers before it is used by the instruction. This expands the
capability of many instructions to improve the core performance
and code density.

» Thumb 16-bit instruction set

* Itis a second 16-bit instruction set that permits the ARM core to
execute either 16 or 32-bit instructions

* The Thumb instruction improve code density by about 30%.

» Conditional execution
* Improves performance and code density by reducing Branch.
» Enhanced instruction

* DSP instruction were added to the standard ARM instruction-set

to support fast 16x16-bit multiplier operations and saturation.

Embedded System Hardware

Embedded systems can control many different devices like small sensors, real-time
control systems. Embedded systems are a combination of software and hardware
components. Each component can be chosen or designed.

* An Embedded system device can be separated into four main components:
— ARM Processor: controls the embedded device.
» An ARM processor comprises a core (the execution engine that processes
instructions and manipulates data), plus the surrounding components
(MMU and caches) that interface it with a bus.
— Controllers: coordinate important functional blocks (e.g. interrupt and
memory controllers)
— Peripherals: Provide input output capability external to the chip. Peripherals
are unique for each type of embedded device.
— Bus:is used to communicate between different parts of the device.

ROM

SRAM
FLASHROM
—{ Mermory cmnrollcr)
DRAM
(Inlerrupl comrollcr]
[Al {B-external bridgc}—- External bus

AHB arbiter

(AHB-APB bridge)

Ethermnet Ethernet
Real-time ¢lock —(: ,

physical
Console — Senal UARTSs

[ARM J [(‘,omml!crsj (l’criphcr.xls) Bus

Figure of An example of an ARM -based embedded device, a microcontroller.

ARM Bus technology
« Embedded systems use different bus technologies than those designed for x86 PC.
— X86 uses PCI bus technology connects Video cards and HD controllers and
hence known as external or off-chip
— Embedded device use an on-chip bus which is internal to the chip

CSE, KSSEM 3

MCES 21CS43

* A Bus has two architecture levels
— The Firstis a physical level that covers the electrical characteristics and bus
width (16, 32, or 64 bits).
— The Second level is the protocol- the logical rules governing the
communication between processor and peripheral.
« ARM seldom implements the electrical characteristics of the bus, but it routinely
specifies the bus protocol.

AMBA Bus Protocol
« AMBA Advanced Micro controller Bus Architecture
— Introduced in 1996, it’s widely adopted as the on-chip bus architecture for
ARM processors.
— The first AMBA buses introduced were
» ASB : ARM System Bus, and
» APB : ARM Peripheral Bus
— Later, ARM introduced another bus design
» AHB: ARM High-performance Bus
 Using AMBA,
— peripheral designers can reuse the same design on multiple projects (with
different processor architecture).
— Plug-and-play interface improves availability and time to market for hardware

developers.
« AHB
— provides higher data throughput than ASB. Because
» It uses a Centralized Multiplexed Bus Scheme (rather than ASB’s
bi-direction bus).
» This change allows the AHB bus to run at higher clock speed.
» 64/128 bits width.
» Two variations on the AHB bus
» Multi-layer AHB, and
* allows multiple active bus masters,

» AHB-Lite: only one master

Memory

— Memory is necessary to have some form of memory to store and execute code.

— For good memory characteristics compare : price, performance, and power
consumption

— Specific memory characteristics are hierarchy, width, and type

— To double the speed for a required bandwidth, memory needs more power.

Memory hierarchy
* Cache
— isused to speed up data transfer between Core and Main Memory (DRAM)
— is physically located nearby the ARM processor core and it is the fastest
memory
— Itprovides an overall increase in performance, but does not support real time
system response
» Note that many small embedded systems do not require the benefit of a
cache.

* Main Memory

— Islarge and it is placed after Cache memory as it is slower than cache

— Load store instructions access the main memory if the values are notin cache.
* Secondary storage

CSE, KSSEM 4

MCES 21CS43

— It is the largest and slowest memory and is placed away from the main
memory. Width adaptive (e.g., 32-bit Core vs. 16-bit BUS)

— The memory width is the number of bits the memory returns on each access
— Typically they are 8,16,32,0r 64 bits.
— Memory width directly effects the overall performance and cost ratio

Memory types
« DRAM

— the most commonly used RAM for devices;

— Dynamic: need to have its storage cells refreshed and given a new electronic
charge every few milliseconds, so you need to set up a DRAM controlr before
using the memory.

« SRAM
— is faster than the more traditional DRAM (SRAM does not require a pause
between data access).
« SDRAM
— is one of many subcategories of DRAM.
— accessed pipelined, transferred in a burst.

Peripherals
+ Embedded system that interact with the outside world need some form of peripheral
device.

— Peripherals range from a simple serial communication device to a more
complex 802.11 wireless device.

* All ARM peripherals are memory mapped - the programming interface is a set of
memory addressed register.

» Controllers are specialized peripherals that implement higher level of functionality
within an embedded system.

— Two important types of controllers are

* Memory Controller
* Interrupt Controller
* Normal IC
* Vectoring IC
* Priority
* Simple Interrupt Dispatch
Memory Controllers: Connect different types of memory to the processor bus.

— On power-up a memory controller is configured in hardware to allow certain
memory device to be active. These memory devices allow the initialization code
to be executed.

— Some memory devices must be set up by software.

* e.g. When using DRAM, you first have to set up the memory timings and
refresh rate before it can be accessed.
Interrupt controller: When a peripheral or device requires attention,
— itraise an interrupt to the processor.
* An interrupt controller

— provides a programmable governing policy

— There are two types of interrupt controller available for the ARM processor

— Standard interrupt controller

* Sends an interrupt signal; Can be programmed to ignore or mask an
individual or set of devices.
* It's interrupt handler determines which device requiring service.

— Vector interrupt controller (VIC)

* Associate a “priority” and a “handler address” to each interrupt.

CSE, KSSEM 5

MCES 21CS43

* Depending onits type, VIC will either call the standard interrupt exception
handler (loading the handler address from VIC) or cause coreto jump to
the handler for the device directly.

Embedded System Software
* An embedded system needs software to drive it.
* There are four typical software components required to control an embedded device.
» Each software component in the stack uses a higher level of abstraction
to separate the code from the hardware device.
— Initialization Code (e.g. Boot loader)
— Operating System
— Device Drivers
— Application

Application

Operating System

R . Device
Tritialization o I

Hardware

Initialization code (or boot code): is the first code executed on the board and is
specific to a particular target or group of targets. It sets-up the minimum parts of the
board before handing over the control to the operating system.
— takes the processor from the reset state to a state where the operating system
can run.
» Configuring memory controller, caches
» Initializing some devices
» in a simple system the OS is replaced by a Debug Monitor or a simple
scheduler.
» Three phases of tasks before handing over the control to the operating system are:
— Initial hardware configuration
» Satisfy the requirements of the booted image
* e.g. re-organization of the memory map
— Diagnostics
» Fault identification and isolation

— Booting
» Loading an image and handing control over to the image
» The boot process may be complicated if the system must boot different
operating systems or different versions of the same operating system.
Example: Memory Reorganization
« Start from ROM
* Remap to RAM
— easy IVT modification

CSE, KSSEM 6

MCES 21CS43

Before After

Oxffffffff

I/0 Regs I1/0 Regs

FAST SRAM

Boot ROM

DRAM DRAM

Targe Targe

contiguous contiguous

block block

Boot ROM L | FAST SRAM
0x00000000

Figure of Memory remapping.
Operating Systems
* OS organizes the system resources
— peripherals, memory, and processing time
» With an OS controlling these resources, they can be efficiently used by
different applications running within the OS environment.
* ARM processors support over 50 OSes
— Two main categories: RTOS, platform OS
» RTOS: guarantee response times to event
» platform OS: require MMU and tend to have secondary storage (for large
application).
* N.B., These two categories of OSes are not mutually exclusive.
— ARM has developed a set of processor cores that specially target each category.
Applications:
* The OS schedules applications
— code dedicated to handling a particular task.
« ARM processors are found in numerous market segments, including
— networking, automotive, mobile and consumer devices, mass storage, and
imaging.
* In contrast, ARM processors are not found in applications that require leading-edge
high performance.

CSE, KSSEM 7

MCES 21CS43

ARM core dataflow model

Daita
A Sy :
Instructon
[-
decoder
Sign extend

Write Read
- Y
ris Register file Rd
pe rO-—ris Resudt |
Rn | A Rm [B
. A | B l|Ace
| Y , Bt 2R
[Barrel shi!'(cr)
‘ T MAC
Y y N
AlLU
3 Y
Y
[A(klress x‘cgislcr}-
()
s) 4
Address
Figure 7.1 ARM core dataflow model.

* ARM core as functional units connected by data buses,

» Arrows represent the flow of data.

* lines represent the buses.

* Boxes represent either an operation unit or a storage area

* Data enters the processor core through the Data bus

+ data may be an instruction to execute or a data item.

* Von Neumann implementation of the ARM— data items and instructions share the
same bus.

* Harvard implementations of the ARM use two different buses.

* Instruction decoder translates instructions before they are executed

« ARM processor, like all RISC processors, uses a load-store architecture.

* This means it has two instruction types for transferring data in and out of the
processor

* load instructions copy data from memory to registers in the core

* store data from registers to memory.

* There are no data processing instructions that directly manipulate data in memory.

+ Data items are placed in the register file—a storage bank made up of 32-bit registers

* The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values
as they are read from memory and placed in a register.

« ARM instructions typically have two source registers, Rn and Rm, and a single result
or destination register, Rd.

* Source operands are read from the register file using the internal buses A4 and B,
respectively.

* ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register
values Rn and Rm from the A and B buses and computes a result.

+ Data processing instructions write the result in Rd directly to the register file.

* Load and store instructions use the ALU to generate an address to be held in the
address register and broadcast on the Address bus.

* load instructions copy data from memory to registers in the core

* store data from registers to memory.

* There are no data processing instructions that directly manipulate data in memory.

CSE, KSSEM 8

MCES 21CS43

Data items are placed in the register file—a storage bank made up of 32-bit registers
The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values
as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result
or destination register, Rd.

Source operands are read from the register file using the internal buses A and B,
respectively.

ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register
values Rn and Rm from the A and B buses and computes a result.

Data processing instructions write the result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the
address register and broadcast on the Address bus.

An important feature of ARM is the Barrel Shifter. The register Rm can be pre-
processed in this Barrel shifter, before it enters ALU. Thus Barrel shifter and ALU
together can calculate a wide range of expressions and addresses.

After processing the result in Rd is written back to the register file using the result
bus.

For load-store instructions the incrementer updates the address register before the
core reads or writes the next register value from or to the next sequential memory
location.

The processor keeps executing until an exception or interrupt changes the normal
execution flow.

REGISTERS

General-purpose registers hold either data or an address.

They are identified with the letter r prefixed to the register number.

Figure below shows the active registers available in user mode—a protected mode
normally

The processor can operate in seven different modes

18 active registers: 16 data registers and 2 processor status registers.

data registers - r0 to r15

Three registers assigned to a particular task or special function: r13, r14, and r15
Register r13 is traditionally used as the stack pointer (sp) and stores the head of the
stack in the current processor mode.

Register r14 is called the link register (/r) and is where the core puts the return
address whenever it calls a subroutine.

CSE, KSSEM 9

MCES 21CS43

User mode

r0
ri
r2
3
r
rs
r6
r7
rsS
ry
rio Interrupt
rili request

13 mode

ri3 sp |=——| ri3_ irq
rid lr |=——| rid_irg
rl5 pc

cpsr
| o]

* Register r15 is the program counter (pc) and contains the address of the next
instruction to be fetched by the processor.

* registers r13 and r14 can also be used as general-purpose registers

*+ OS assumes r13 is pointing to valid stack frame, not recommended as general
purpose registers

Register in ARM:
. Orthogonal Registers (ref. VAX, PDP-11)
We say RO~R13 are orthogonal, for given instruction, if it can use RO, then
others can also be used.
— there are two program status registers: cpsr and spsr (the current and saved
program status registers, respectively).
PSRs
R13(sp), R14(Ir), R15(pc)
. CPSR/SPSR
— Condition Codes: N,Z,C,V
— Interruption mask: I[(IRQ), F(FIQ)
— Thumb Enable Bit
— Mode(5-bit)

Current Program Status Register:

= Flags Status Extension Control
Ficlds } it it ik i
Bt 3l 30 29 28 7 6 5 4 0
N|Z|C|V 1\F\T Mode
Function —————F [— 3 r
Condition Interrupt Processor
flags Masks mode
Thumb
stalce
Figure 7.3 A generic program status register (psr).

CSE, KSSEM 10

MCES 21CS43

ARM core uses the cpsr to monitor and control internal operations.

cpsr is a dedicated 32-bit register and resides in the register file.

Figure shows the basic layout of a generic program status register.

Note that the shaded parts are reserved for future expansion.

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and
control

In current designs the extension and status fields are reserved for future use .
The control field contains the processor mode, state, and interrupt mask bits.

The flags field contains the condition flags.

Some ARM processor cores have extra bits allocated.

For example, the J bit, which can be found in the flags field, is only available on
Jazelle-enabled processors, which execute 8-bit instructions

Processor Modes

Processor mode determines which registers are active and the access rights to the
cpsr register itself.

Each processor mode is either privileged or nonprivileged.

A privileged mode allows full read-write access to the cpsr.

Conversely, a nonprivileged mode only allows read access to the control field in the cpsr
but still allows read-write access to the condition flags

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one nonprivileged
mode(user),

Processor enters abort mode when there is a failed attempt to access memory.
Fast interrupt request and interrupt request modes correspond to the two
interrupt levels available on the ARM processor.

Supervisor mode is the mode that the processor is in after reset and is generally
the mode that an operating system kernel operates in.

System mode is a special version of user mode that allows full read-write
access to the cpsr.

Undefined mode is used when the processor encounters an instruction
that is undefined or not supported by the implementation.

User mode is used for programs and applications.

CSE, KSSEM 11

MCES 21CS43

Banked Registers

User and

sysicom

R
ri

re

rs

r<

rS Fasrt

o3 mniterrign

P ‘-‘. e cl{ll‘\l

rS rS_fig

9 _fig

rlO rlO_fig

77 ril_fig Interrupt '

T3 FI2_ fig request Supervisor Undefined \Dbore
rl3 sp ri3_Jfig ril 3 _irg ri3_svc ri3_undef ri3_abi
rld b rid_Jfig rid_irg rid_svce ri<d_undef rild_abn

/[\'Iv,

(/'\I

| spsr_fig| |spsr_irg| |spsr_sve]| |spsr_undef| | spsr_abt |

Figure 74 Complete ARM register set.

* Figure shows all 37 registers in the register file.

* 20 registers are hidden from a program at different times.

* These registers are called banked registers and are identified by the shading in the
diagram.

* They are available only when the processor is in a particular mode.

 For example, abort mode has banked registers r13_abt, r14_abt and spsr_abt.

* Banked registers of a particular mode are denoted by an underline character post-
fixed to the mode mnemonic or _mode.

* Every processor mode except user mode can change mode by writing directly to the
mode bits of the cpsr.

» All processor modes except system mode have a set of associated banked registers
that are a subset of the main 16 registers.

* Abanked register maps one-to-one onto a user mode register.

» If you change processor mode, a banked register from the new mode will replace an
existing register.

* For example, when the processor is in the interrupt request mode, the instructions
you execute still access registers named r13 and r14.

* However, these registers are the banked registers r13_irq and r14 irq.

* The user mode registers r13_usr and r14 usr are not affected by the instruction
referencing these registers.

* A program still has normal access to the other registers r0 to r12.

* processor mode can be changed by a program that writes directly to the cpsr (the
processor core has to be in privileged mode) or by hardware when the core responds to
an exception or interrupt.

 The following exceptions and interrupts cause a mode change: reset, interrupt
request, fast interrupt request, software interrupt, data abort, prefetch abort,
and undefined instruction.

* Exceptions and interrupts suspend the normal execution of sequential instructions
and jump to a specific location

CSE, KSSEM 12

MCES 21CS43

User mode

rg
ri
r2
r3
rd
rs
r6
r7
ry
ry
rl0 Interrapt
rll I'r‘([ll('.\l
] mode

ril3sp |=—-=| rid_irg

ridly |=—-w| rld_irg
rls pe
psr

\“[\/L\I_in/l

Figure 7.5 Changing mode on an exception.

* The figure shows the core changing from user mode to interrupt request mode.

* This change causes user registers r13 and r14 to be banked.

* The user registers are replaced with registers r13_irq and r14 irq, respectively.

* Note r14 irq contains the return address and r13_irqg contains the stack pointer for
interrupt request mode.

* Figure also shows a new register appearing in interrupt request mode

+ The saved program status register (spsr), which stores the previous mode’s cpsr.

* Can see in the diagram the cpsr being copied into spsr_irq.

* To return back to user mode, a special return instruction is used that instructs the
core to restore the original cpsr from the spsr_irq and bank in the user registers r13
and ri14.

* Note that the spsr can only be modified and read in a privileged mode. There is
no spsr available in user mode.

* Another important feature to note is that the cpsr is not copied into the spsr when
a mode change is forced due to a program writing directly to the cpsr.

* The saving of the cpsr occurs only when an exception or interrupt is raised.

* The table below shows that the current active processor mode occupies the five least
significant bits of the cpsr.

* When power is applied to the core, it starts in supervisor mode.

List of various modes and the associated binary patterns.
Table 7.1 Processor mode.

Mode Abbreviation Privileged Mode|4:0]
Abort abt yes 10111
Fast interrupt request fiq yes 10001
Interrupt request irq yes 10010
Supervisor SVC yes 10011
System sYs yes 11111
Undefined und yes 11011
User usr no 10000

CSE, KSSEM 13

MCES 21CS43

The last column of the table gives the bit patterns that represent each of the
processor modes in the cpsr.

State and Instruction Sets

Table 7.2 ARM and Thumb instruction set features.

O O 00 OO0 OO0 oOooo

ARM (¢psr T=0) Thumb (¢psr T=1)
Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional execution® most only branch instructions
Data processing access to barrel shifter and separate barrel shifter and
instructions ALU ALU instructions
Program status register read-write in privileged mode no direct access
Register usage 15 general-purpose registers 8 general-purpose registers
+pc +7 high registers +pc

The state of the core determines which instruction set is being executed.

There are three instruction sets: ARM, Thumb, and Jazelle.

The ARM instruction set is only active when the processor is in ARM state.
Thumb instruction set is only active when the processor is in Thumb state. Once in
Thumb state the processor is executing purely Thumb 16-bit instructions.

You cannot intermingle sequential ARM, Thumb, and Jazelle instructions.
Jazelle J and Thumb T bits in the cpsr reflect the state of the processor.

When both J and T bits are 0O, the processor is in ARM state and executes ARM
instructions.

This is the case when power is applied to the processor.

When the T bit is 1, then the processor is in Thumb state.

To change states the core executes a specialized branch instruction. Table 2.2
compares the ARM and Thumb instruction set features.

ARM designers introduced a third instruction set called Jazelle.

Jazelle executes 8-bit instructions and is a hybrid mix of software and hardware
designed to speed up the execution of Java bytecodes.

To execute Java bytecodes, you require the Jazelle technology plus a specially
modified version of the Java virtual machine.

Note that the hardware portion of Jazelle only supports a subset of the Java
bytecodes; the rest are emulated in software.

Table 7.3 Jazelle instruction set features,

Jazelle (cpsr T =0,] = 1)

Instruction size §-bit
Core instructions ~ Over 60% of the Java bytecodes are implemented in hardware;
the rest of the codes are implemented in software.

The Jazelle instruction set is a closed instruction set and is not openly available. Table 7.3
gives the Jazelle instruction set features.

Interrupt Masks

Interrupt masks are used to stop specific interrupt requests from interrupting the
processor.
There are two interrupt request levels available on the ARM processor core—

- interrupt request (IRQ)

- fast interrupt request (FI1Q).

CSE, KSSEM 14

MCES 21CS43

* c¢psr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking of
IRQ and FIQ.
* The I bit masks IRQ when set to binary 1, F bit masks FIQ when set to binary 1.

Condition Flags

Table 7.4 Condition flags.

Flag Flag name Set when

Q Saturation the result causes an overflow and/or saturation

v oVerflow the result causes a signed overflow

C Carry the result causes an unsigned carry

Z Zero the result is zero, frequently used to indicate equality
N Negative bit 31 of the result is a binary 1

* Condition flags are updated by comparisons and the result of ALU operations that
specify the S instruction suffix.

* For example, if a SUBS subtract instruction results in a register value of zero, then
the Z flag in the cpsr is set. This particular subtract instruction specifically updates
the cpsr.

* With processor cores that include the DSP extensions, the Q bit indicates if an
overflow or saturation occurs.

* The flagis “sticky” in the sense that the hardware only sets this flag. To clear the
flag you need to write to the cpsr directly.

+ InJazelle-enabled processors, the J bit reflects the state of the core; if itis set, the
core is in Jazelle state.

« The J bitis not generally usable and is only available on some processor cores.

+ To take advantage of Jazelle, extra software has to be licensed from both ARM
Limited and Sun Microsystems.

* Most ARM instructions can be executed conditionally on the value of the condition
flags. Table 2.4 lists the condition flags and a short description on what causes them
to be set.

* These flags are located in the most significant bits in the cpsr. These bits are used
for conditional execution.

ooy 1ol 0 ooy iooll

. j e | —
nzCvq | iF t+ SVC

Figure 7.6 Example: cpsr = nzCvgjiFt_SVC.

* Figure 2.6 shows a typical value for the cpsr with both DSP extensions and Jazelle.
* When a bitis a binary 1 we use a capital letter.
* when a bit is a binary 0, we use a lowercase letter.
* For the condition flags a capital letter shows that the flag has been set.
* For interrupts a capital letter shows that an interrupt is disabled.
* In the cpsr the C flag is the only condition flag set.
* The rest nzvq flags are all clear.
* The processor is in ARM state because neither the Jazelle j nor Thumb ¢ bits are set.
* IRQ interrupts are enabled, and FIQ interrupts are disabled.
* Finally can see from the figure the processor is in supervisor (SVC) mode

since the mode[4:0] is equal to binary 10011.

CSE, KSSEM 15

MCES 21CS43

Conditional Execution

Table 7.5 Condition mnemonics.

Mnemonic Name Condition flags
EQ equal Z

NE not equal 2

CS HS carry set/unsigned higher or same C

CC Lo carry clear/unsigned lower ¢

MI minus/negative N

PL plus/positive or zero "

Vs overflow v

Ve no overflow v

HI unsigned higher zC

LS unsigned lower or same Zor¢

GE signed greater than or equal NVor nv

LT signed less than Nvor nV

GT signed greater than NzVor nzy
LE signed less than or equal Zor Nvor nV
AL always (unconditional) ignored

* Conditional execution controls whether or not the core will execute an instruction.

* Most instructions have a condition attribute.

« It determines if the core will execute it based on the setting of the condition flags.

* Prior to execution, the processor compares the condition attribute with the condition
flags in the cpsr.

« Ifthey match, then the instruction is executed; otherwise the instruction is ignored.

Pipeline

0 Fetch)—’Ol)ccndc)—-()lixcclnc)

Figure 7.7 ARM7 Three-stage pipeline.

= A pipeline is the mechanism a RISC processor uses to execute instructions.
= Using a pipeline speeds up execution by fetching the next instruction while other
instructions are being decoded and executed.
Three-stage pipeline:
m Fetch loads an instruction from memory.
m Decode identifies the instruction to be executed.
m Execute processes the instruction and writes the result back to a register.

CSE, KSSEM 16

MCES 21CS43

| Fetch Decaodde Execute

Time | Cycle | () ADD H-+{) H+)
Cycle 2 (] sus H-+{] Ao H-{))
| cyete 0 CMP }-0 SuB) -'0

Figure 7.8 Pipelined instruction sequence.

 EX: shows a sequence of three instructions being fetched, decoded, and executed
by the processor.

* Each instruction takes a single cycle to complete after the pipeline is filled.

* The three instructions are placed into the pipeline sequentially.

* In the first cycle the core fetches the ADD instruction from memory.

* In the second cycle the core fetches the SUB instruction and decodes the ADD
instruction.

* In the third cycle, both the SUB and ADD instructions are moved along the pipeline.

* ADD instruction is executed.

* SUB instruction is decoded.

* CMP instruction is fetched

* This procedure is called filling the pipeline.

* The pipeline allows the core to execute an instruction every cycle.

* As pipeline length increases, the amount of work done at each stage is reduced,
which allows the processor to attain a higher operating frequency.

* In turn increases the performance.

* System latency also increases because it takes more cycles to fill the pipeline before
the core can execute an instruction.

* Increased pipeline length also means there can be data dependency between certain
stages.

() Fereh }—<{) Decode }—f} Exccute }—of) Memory}—{] Write)

Figure 7.9 ARMS five-stage pipeline,

O h’uh) '0 Issue) 'Ol)uudv) -0! \\'\mc) -O\lcmn-n'} 'O Wiite)

Figure 7.10 ARMI0 six-stage pipeline.

* Pipeline design for each ARM family differs. For example, The ARM9 core increases
the pipeline length to five stages.

* ARMO9 adds a memory and write back stage, which allows the ARM9 to process on
average 1.1 Dhrystone MIPS per MHz & increases throughput by around 13%
compared with an ARM7.

* The maximum core frequency attainable using an ARMO is also higher.

* ARM10 increases the pipeline length still further by adding a sixth stage

* Average 1.3 Dhrystone MIPS per MHz,

* 34% more throughput than an ARM7 processor core, but again at a higher latency
cost.

* Even though the ARM9 and ARM10 pipelines are different, they still use the same

pipeline executing characteristics as an ARM7.

Code written for the ARM7 will execute on an ARM9 or ARM10

CSE, KSSEM 17

MCES 21CS43

Pipeline Executing Characteristics

Fetch Decode Execute

Time | Cycle | e

Cyele 2 =

Cycle 3 | xmcf;:’C
| Cycle 4 ADD

Figure7.11 ARM instruction sequence,

« ARM pipeline has not processed an instruction until it passes completely through
the execute stage.

* For example, an ARM7 pipeline (with three stages) has executed an instruction only
when the fourth instruction is fetched.

* Figure 7.11 shows an instruction sequence on an ARM7 pipeline.

* MSR instruction is used to enable IRQ interrupts.

* Only occurs once the MSR instruction completes the execute stage of the pipeline.

* It clears the I bit in the cpsr to enable the IRQ interrupts.

* Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts
are enabled.

Time 0x8000 LDR pc, [pc,#0]
0x8004 NOP
¢ Ox8008 DCO jumpAddress

Fkkll [)u.l\lu E \L\.llk
() oco NOP LDR
pe+s

(0x8000 + 8)

Figure 7.12 Example: pc = address + 8.

* Figure 7.12 illustrates the use of the pipeline and the program counter pc.

* In the execute stage, the pc always points to the address of the instruction plus 8
bytes.

* In other words, the pc always points to the address of the instruction being executed
plus two instructions ahead.

* when the pc is used for calculating a relative offset and is an architectural
characteristic across all the pipelines.
There are three other characteristics of the pipeline worth mentioning.
- First, the execution of a branch instruction or branching by the direct modification
of the pc causes the ARM core to flush its pipeline.
- Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush
by predicting possible branches and loading the new branch address prior to the
execution of the instruction.
- Third, an instruction in the execute stage will complete even though an interrupt
has been raised.

CSE, KSSEM 18

MCES 21CS43

Exceptions, Interrupts, and the Vector Table

Table 7.6 The vector table.
Exception/interrupt Shorthand Address High address
Reset RESET 0x00000000 oxffffoo0o0
Undefined instruction UNDEF 0x00000004 oxffffoooa
Software interrupt SW1 0x00000008 Oxffffooos
Prefetch abort PABT 0x0000000c Oxffffo00c
Data abort DABT 0x00000010 Oxffffool0
Reserved — 0x00000014 oxffffoois
Interrupt request IRQ 0x00000018 oxffffoois

Fast interrupt request FI1Q 0x0000001c¢ Oxffffoolc

* When an exception or interrupt occurs, the processor sets the pc to a specific
memory address.

* Address is within a special address range called the vector table.

* Entries in the vector table are instructions that branch to specific routines designed
to handle a particular exception or interrupt.

* Memory map address 0x00000000 is reserved for the vector table, a set of 32-bit
words.

* On some processors the vector table can be optionally located at a higher address
in memory (starting at the offset 0xffff0000).

* Operating systems such as Linux and Microsoft’s embedded products can take
advantage of this feature.
m Reset is executed by the processor when power is applied. This instruction
branches to the initialization code.
m Undefined instruction vector is used when the processor cannot decode an
instruction.
m Software interrupt vector SWI instruction. The SWI instruction is frequently used
as the mechanism to invoke an operating system routine.
m Prefetch abort vector occurs when the processor attempts to fetch an instruction
from an address without the correct access permissions. The actual abort occurs in
the decode stage.
m Data abort vector is similar to a prefetch abort but is raised when an instruction
attempts to access data memory without the correct access permissions.
m Interrupt request vector is used by external hardware to interrupt the normal
execution flow of the processor. It can only be raised if IRQs are not masked in the
Cpsr.

Core Extensions

 Improve performance, manage resources, and provide extra functionality and are
designed to provide flexibility in handling particular applications.

+ Each ARM family has different extensions available

* Three hardware extensions ARM wraps around the core are:
U cache and tightly coupled memory

U memory management

U coprocessor interface.

Cache and Tightly Coupled Memory

CSE, KSSEM 19

MCES 21CS43

Unified cache
(Logic and control J

I

—(.-\.\IH:\ bus interface unn)—
- |

et mermeey)

On-chip AMBA bus

Figure 7.13 A simplificd Von Neumann architecture with cache.
Cache is a block of fast memory placed between main memory and the core.
With a cache the processor core can run for the majority of the time without having
to wait for data from slow external memory.
single-level cache internal to the processor.
ARM has two forms of cache. First is found attached to the Von Neumann-style
cores.
It combines both data and instruction into a single unified cache.
For simplicity, we have called the glue logic that connects the memory system to the
AMBA bus logic and control
overall increase in performance but at the expense of predictable execution.
But for real-time systems it is paramount that code execution is deterministic—
The time taken for loading and storing instructions or data must be predictable.
This is achieved using a form of memory called tightly coupled memory (TCM).
TCMs appear as memory in the address map and can be accessed as fast memory.
An example of a processor with TCMs is shown in Figure 2.14.

ARM core)
|

(Logic and control)
»| 7|
Data Instruction 24 7
TCM TCM ="

—
—(.—\I\IB:\ bus interface llllll)— q(‘\’h"" '"c"""-\')

I)'Ql]

On-chip AMBA bus

Figure 7.14 A simplified Harvard architecture with TCMs.

(ARM core)

(Logic and control)
D| 1]

o ! Data Instruction
Data Instruction cache cache
TCM TCM
| G
{.-\.\‘IB:\ bus interface uml}- Main memory

D+1|
On-chip AMBA bus

Figure 7.15 A simplified Harvard architecture with caches and TCMs.

CSE, KSSEM 20

MCES 21CS43

* By combining both technologies, ARM processors can have both improved
performance and predictable real-time response. Figure 2.15 shows an example core
with a combination of caches and TCMs.

Memory Management
* Embedded systems often use multiple memory devices.
* Itis usually necessary to have a method to help organize these devices and protect
the system from applications trying to make inappropriate accesses to hardware.
* Thisis achieved with the assistance of memory management hardware.
* ARM cores have three different types of memory
- no extensions providing no protection,
- amemory protection unit (MPU) providing limited protection,
- a memory management unit (MMU) providing full protection:
m Nonprotected memory is fixed and provides very little flexibility.
* Itis normally used for small, simple embedded systems that require no protection
from rogue applications
m MPUs employ a simple system that uses a limited number of memory regions.
 These regions are controlled with a set of special coprocessor registers,
. each region is defined with specific access permissions.
* This type of memory management is used for systems that require memory
protection but don’t have a complex memory map.
m MMUs are the most comprehensive memory management hardware available on the
ARM.
« The MMU uses a set of translation tables to provide fine-grained control over
memory.
* These tables are stored in main memory and provide a virtual-to-physical address
map as well as access permissions.
+ MMUsare designed for more sophisticated platform operating systems that support
multitasking

Coprocessors

* Coprocessors can be attached to the ARM processor.

* More than one coprocessor can be added to the ARM core via the coprocessor
interface.

* The coprocessor can be accessed through a group of dedicated ARM instructions
that provide a load-store type interface.

* Consider, for example, coprocessor 15: The ARM processor uses coprocessor 15
registers to control the cache, TCMs, and memory management.

kkkkkkkkk

CSE, KSSEM 21

MC-BCS402

MODULE -2

ARM INSTRUCTIONS

Introduction to the ARM Instruction Set: Data Processing Instructions , Branch Instructions,
Software Interrupt Instructions, Program Status Register Instructions, Coprocessor
Instructions, Loading Constants, Simple programming exercises.
The most common and useful ARM instructions are introduced in this module. Different ARM
architecture versions support different instructions. But new versions add more instructions
and new versions are backward compatible. The following table has a complete list of ARM
instructions available in ARMvV5E ISA (Instruction Set Architecture). The ARM ISA column in
the table lists the ISA revision (version) in which the instruction was introduced.

Table8.1 ARM instruction set.

Mnemonics ARM ISA Description

ADC vl add two 32-bit values and carry

ADD vl add two 32-bit values

AND vl logical bitwise AND of two 32-bit values

B vl branch relative +/~ 32 MB

BIC vl logical bit clear (AND NOT) of two 32-bit values

BKPT v3 breakpoint instructions

BL vl relative branch with link

BLX v5 branch with link and exchange

BX v4T branch with exchange

cop CopP2 v2vi coprocessor data processing operation

CLz v3 count leading zeros

CMN vl compare negative two 32-bit values

cMp vl compare two 32-bit values

EOR vl logical exclusive OR of two 32-bit values

LDC LDC2 v2v3 load to coprocessor single or multiple 32-bit values

LOM vl load multiple 32-bit words from memory to ARM registers

LOR vl v4 vSE load a single value from a virtual address in memory

MCR MCRZ MCRR v2v5Vv5E move to coprocessor from an ARM register or registers

MLA v2 multiply and accumulate 32-bit values

MOV vl move a 32-bit value into a register

MRC MRC2 MRRC v2v3vSE move to ARM register or registers from a coprocessor

MRS v3 move to ARM register from a status register (cpsr or spsr)

MSR vi move to a status register (cpsr or spsr) from an ARM register

MUL v2 multiply two 32-bit values

MVYN vl move the logical NOT of 32-bit value into a register

ORR vl logical bitwise OR of two 32-bit values

PLD vSE preload hint instruction

QADD v3E signed saturated 32-bit add

QDADD v3E signed saturated double and 32-bit add

QDSUB v3E signed saturated double and 32-bit subtract

QsuB vSE signed saturated 32-bit subtract

RSB vl reverse subtract of two 32-bit values

RSC vl reverse subtract with carry of two 32-bit integers

SBC vl stbtract with carry of two 32-bit values

SMLAXxy vSE signed multiply accumulate instructions ((16 x 16) + 32 = 32-bit)

SMLAL v3M signed multiply accumulate long ((32 x 32) + 64 = 64-bit)

SMLALxy v3E signed multiply accumulate long ((16 x 16) + 64 = 64-bit)

SMLAWY v3E signed multiply accumulate instruction (((32 x 16) 3 16) 4+ 32 = 32-bit)

SMULL v3iM signed multiply long (32 x 32 = 64-bit)

continued

CSE, KSSEM 22

MC-BCS402

Table 8.1 ARM instruction set. (Continued)

Mnemonics ARM ISA Description

SMULxy v3E signed multiply instructions (16 x 16 = 32-bit)

SMULWy v3E signed multiply instruction ((32 x 16} 3> 16 = 32-bit)

STC STC2 v2v3 store to memory single or multiple 32-bit values from coprocessor
STM vl store multiple 32-bit registers to memory

STR vl vd v3E store register to a virtual address in memory

SUB vl subtract two 32-bit values

SH1 vl software interrupt

SWP v2a swap a word/byte in memory with a register, without interruption
TEQ vl test for equality of two 32-bit values

TST vl test for bits in a 32-bit value

UMLAL viM unsigned multiply accumulate long ((32 x 32) + 64 = 64-bit)
UMULL viM unsigned multiply long (32 x 32 = 64-bit)

The processor operation is illustrated with PRE and POST-conditions. These conditions
describe the registers and memory before and after the instruction is executed.
Hexadecimal numbers are represented with the prefix of 0x
Binary numbers are represented with the prefix of Ob.

PRE <pre-conditions>

<instruction/s>
POST <post-conditions>

In the pre- and post-conditions, memory is denoted as
mem<data_size>[address]
This refers to data_size - bits of memory starting at the given byte address.

Ex: mem32[1024] is the 32-bit value starting at address 1KB.

ARM instructions process the data present in the registers. Memory can be accessed
only with LOAD and STORE instructions. ARM instructions can have 2 or 3 operands.

Ex: The ADD instruction shown below adds the two values stored in the source registers
rl and r2. After adding the sum is stored in the destination register r3.

Instruction Destination Source Source
Syntax register (Rd) register 1 (Rn) register 2 (Rm)
ADD r3, ri, r2 r3 rl r2

Data Processing instructions
The data processing instructions manipulate data within registers. There are 5 types
of data processing instructions as listed below:

- Move instructions

- Arithmetic Instructions

- Logical Instructions

- Comparison Instructions
- Multiply Instructions.

CSE, KSSEM 23

MC-BCS402

Most of the data processing instructions in ARM can process one of their operands
using the barrel shifter. Suffix S is used on a data processing instruction, to update
the flags in the cpsr.

Move and logical operations update the carry flag C, negative flag N, and zero flag Z.
* The carry flag is set from the result of the barrel shift as the last bit is shifted out.
« The N flag is set to bit 31 of the result.

* The Zflag is set if the result is zero

2.1.1-MOVE Instructions: Move is the simplest ARM instruction. It copies N into a
destination register Rd, where N is a register or immediate value. This instruction is
useful for setting initial values and transferring data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MoV Move a 32-bit value into a register Rd=N

MVN move the NOT of the 32-bit value into a register Rd =~N

ExampLe This example shows a simple move instruction. The MOV instruction takes the contents of
3] registerrd and copies them into register r7, in this case, taking the value 5, and overwriting

2. v o

the value 8 in register r7.

PRE r5=5

r7 = 8

MOV r7, r5 : let r7 = r5
POST r5=95

r7 =5

Barrel Shifter

* In Example 2.1 a MOV instruction is shown where N is a simple register. But N can
be more than just a register or immediate value.

* It can also be a register Rm that has been pre-processed by the barrel shifter prior
to being used by a data processing instruction.

* Data processing instructions are processed within the arithmetic logic unit (ALU).

* A unique and powerful feature of the ARM processor is the ability to shift the 32-bit
binary pattern in one of the source registers left or right by a specific number of
positions before it enters the ALU.

» This shiftincreases the power and flexibility of many data processing operations.

* There are data processing instructions that do not use the barrel shifter, for
example, the MUL (multiply), CLZ (count leading zeros), and QADD (signed
saturated 32-bit add) instructions.

* Pre-processing or shift occurs within the cycle time of the instruction. This is
particularly useful for loading constants into a register and achieving fast multiplies
or division by a power of 2.

* Toillustrate the barrel shifter add a shift operation to the move instruction example.

CSE, KSSEM 24

MC-BCS402

Register Rn enters the ALU without any pre-processing of registers. Figure 2.1 shows
the data flow between the ALU and the barrel shifter.

ExampLe Weapply alogical shift left (LSL) to register Rm before moving it to the destination register.
2.2 This is the same as applying the standard C language shift operator < to the register. The
MOV instruction copies the shift operator result N into register Rd. N represents the result
of the LSL operation described in Table 2.2
PRE rs =95
r7 =8

.
&

Rn ; Rm

(H.u el \hnltﬂ)

Result N

NO pee-procesen

&

4 hd

&\ulhnwlu logic uutj

|

.
Rd

Figure 21 Barrel shifter and ALU,

MoV r7, r5, LSL #2 ; Tet r7 = r5*4 = (r5<<2)

The example multiplies register r5 by four and then places the result into register r7.

The below diagram illustrates a logical shift left by one. If the contents of bit O are
shifted to bit 1 then bit 0 is cleared.

The C flag is updated with the last bit shifted out of the register.
This is bit (32 - y) of the original value, where y is the shift amount.

When y is greater than one, then a shift by y positions is the same as a shift by one
position executed y times.

"o

o
C“ | - OxB80000004
/ / / /
S o

/ . / 4 /
L4
= o OJfofeeceeea- o @ - OXO00000008
Condition Sags
Comdition Mags
upsiatced when
S s proescont

Figure 22 Logical shift left by one.

Condition Gags

C =~ I ICC)(E) -~~~

CSE, KSSEM 25

MC-BCS402

The five different operations that can be used within the barrel shifter are as in the
below table.

Table 8.2 Barrel shifter operations.

Mnemonic Description Shift Result Shift amount y
LSL logical shift left xLSLy x<«y #0-31 or Rs
LSR logical shift right xLSRy (unsigned)x>> y #1-32 or Rs
ASR arithmetic right shift ~ xASRy (signed)x>> y #1-32 or Rs
ROR rotate right XxRORy ((unsigned)x > y) | (x & (32 ~y)) #1-31orRs
RRX rotate right extended xRRX (¢ flag < 31) | ((unsigned)x>> 1) none

Note: x represents the register being shifted and y represents the shift amount.

+ Table 3.3 lists the syntax for the different barrel shift operations available on data
processing instructions.

* The second operand N can be an immediate constant preceded by #, a register value
Rm, or the value of Rm processed by a shift.

Table 8.3 Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate fFinmediate

Register Rm

Logical shift left by immediate Rm, LSL #shift_imm
Logical shift left by register Rm, LSL Rs

Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift_imm
Arithmetic shift right by register Rm, ASR Rs

Rotate right by immediate Rm, ROR #shift_imm
Rotate right by register Rm, ROR Rs

Rotate right with extend Rm, RRX

exampre This example of a MOVS instruction shifts register rl left by one bit. This multiplies register
8.3 rlbya value 2'. As you can see, the € flag is updated in the cpsr because the § suffix is
present in the instruction mnemonic.

PRE cpsr = nzcvqiFt_USER
r0 = 0x00000000
rl = 0x80000004

MOVS r0, rl, LSL #1
POST cpsr = n2CvqiFt_USER

r0 = 0x00000008

ri = 0x80000004

ARITHMETIC instructions

* The arithmetic instructions implement addition and subtraction of 32-bit signed
and unsigned values.

CSE, KSSEM 26

MC-BCS402

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

ADC | add two 32-bit values and carry Rd = Rn+ N+ carry
ADD | add two 32-bit values Ri=Rn+N
RSB | reverse subtract of two 32-bit values Ri=N -Rn

RSC | reverse subtract with carry of two 32-bit values | Rd = N — Rn—!(carry flag)

SBC | subtract with carry of two 32-bit values Rd = Rn— N-!(carry flag)

SUB | subtract two 32-bit values Ri=Rn—-N

Nis the result of the shifter operation. The syntax of shifter operation is shown in Table 3.3.

Exampere This simple subtract instruction subtracts a value stored in register r2 from a value stored
8.4 in register ri. The result is stored in register r0.

PRE rQo = 0x00000000
rl = 0x00000002
rz = 0x00000001
SUB r0, ri, r2

POST r0 = 0x00000001

ExampPLE This reverse subtract instruction (RSB) subtracts rl from the constant value #0, writing the
8.5 result to 10. You can use this instruction to negate numbers.

PRE r0 = 0x00000000
ri = 0x00000077

RSB rO, r1, #0 ; Rd = 0x0 - rl

POST ro = -ri1 =~ oxffffffao

ExampeLe The SUBS instruction is useful for decrementing loop counters. In this example we subtract
8.6 the immediate value one from the value one stored in register rl. The result value zero is
written to register rl. The cpsr is updated with the ZC flags being set.

PRE cpsr = nzcvqgiFt _USER
rl = 0x00000001

sSuss ri1, ri, #1

POST cpsr = nZCvqiFt_USER
rl = Ox00000000

Using the Barrel Shifter with Arithmetic Instructions

+ The wide range of second operand shifts available on arithmetic and logical
instructions is a very powerful feature of the ARM instruction set.

« Example 3.7 illustrates the use of the inline barrel shifter with an arithmetic
instruction.

* The instruction multiplies the value stored in register r1 by three.

CSE, KSSEM

27

MC-BCS402

ExampPLE Register rl s first shifted one location to the left to give the value of twice rl. The ADD
8.7 instruction then adds the result of the barrel shift operation to register rl. The final result
transferred into register r0is equal to three times the value stored in register rl.

PRE r0 = Ox00000000
rl = 0x00000005

ADD rO, rl, rl, LSL #1

POST r0 = 0x0000000f
rl = 0x00000005

Logical Instructions
* Logical instructions perform bitwise logical operations on the two source registers.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd = Rn&N
ORR logical bitwise OR of two 32-bit values Rd =Rn| N
EOR logical exclusive OR of two 32-bit values Rd=Rn" N
BIC logical bit clear (AND NOT) Rd = Rn& ~N

exampPLE This example shows a logical OR operation between registers rl and r2. r0 holds the result.

8.8
PRE ro = 0x00000000
rl = 0x02040608
r2 = 0x10305070

ORR ré, rl1, r2

POST r0 = 0x12345678

Exampere This example shows a more complicated logical instruction called BIC, which carries out
8.9 a logical bit clear.

PRE rl = Obllll
r2 = 0b0101

BIC rO, rl, r2
POST rO = 0b1010
This is equivalent to Rd = Rn AND NOT(N)
* In this example, register r2 contains a binary pattern, where every binary 1 in r2
clears a corresponding bit location in register r1.

* This instruction is particularly useful when clearing status bits and is frequently
used to change interrupt masks in the cpsr.

* The logical instructions update the cpsr flags only if the S suffix is present.

* These instructions can use barrel-shifted second operands in the same way as the
arithmetic instructions.

CSE, KSSEM 28

MC-BCS402

Comparison Instructions

* The comparison instructions are used to compare or test a register with a 32-bit
value.

« They update the cpsr flag bits according to the result, but do not affect other
registers.

* After the bits have been set, the information can then be used to change program
flow by using conditional execution.

* S suffix is not necessary for comparison instructions to update the flags.

Syntax: <instruction>{<cond>} Rn, N

CMN compare negated flags set as aresult of Ru+ N
CMP compare flags set as a result of Rn — N
TEQ test for equality of two 32-bit values flags set as a result of Rn ™ N
TST test bits of a 32-bit value flags set as aresult of Ru& N

*+ The CMP is effectively a subtract instruction with the result discarded; similarly the
TST instruction is a logical AND operation, and TEQ is a logical exclusive OR
operation.

* For each, the results are discarded but the condition bits are updated in the cpsr. It
is important to understand that comparison instructions only modify the conditional
flags of the cpsr and do not affect the registers being compared.

ExampPLE This example shows a CMP comparison instruction. You can see that both registers, rl and
8.10 19, are equal before executing the instruction. The value of the z flag prior to execution is 0
and is represented by a lowercase z After execution the z flag changes to | or an uppercase

Z. This change indicates equality.

PRE cpsr = nzcvqiFt_USER
ro = 4§
r9 = 4

CMP r0, r9

POST cpsr = nZcvgiFt_USER
Multiply Instructions

* The multiply instructions multiply the contents of a pair of registers and, depending
upon the instruction, accumulate the results in with another register.

* The long multiplies accumulate onto a pair of registers representing a 64-bit value.

* The final result is placed in a destination register or a pair of registers.

CSE, KSSEM 29

MCES 21CS43

Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn
MUL{<cond=}{S} Rd, Rm, Rs

MLA multiply and accumulate Rd = (Rm” Rs) +~ Rn

MUL multiply Rd = Rm”™ Rs

Syntax: <instruction>{<cond>)}{S} RdLo, RdHi, Rm, Rs

SMLAL | signed multiply accumulate long | [RdHi, RdLo] = [RdHi, RdLo) + (Rm * Rs)

SMULL | signed multiply long [RdHi, RdLo]l = Rm ™ Rs

UMLAL unsigned multiply accuamulate | RdHi, RdLo| = | RdHi, RdLo)] + (Rm * Rs)
long

uMuLL | unsigned multiply long [RdHi, RdLo] = Rm * Rs

* The number of cycles taken to execute a multiply instruction depends on the
processor implementation. For some implementations the cycle timing also depends on
the value in Rs.

ExampLE Thisexample shows a simple multiply instruction that multiplies registers rl and r2together
8.11 and places the result into register 10. In this example, register rl is equal to the value 2, and
r2is equal to 2. The result, 4, is then placed into register r().

PRE r0 = 0x00000000
r1 = 0x00000002
r2 = 0x00000002

MUL rO, rl, r2 ; r0=ri"r2

POST r0 = 0x00000004
rl = 0x00000002
r2 = 0x00000002

* The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-
bit result.

+ If the result is too large to fit in a single 32-bit register, then the result is placed in
two registers labeled RdLo and RdHi. RdLo holds the lower 32 bits of the 64-bit
result, and RdHi holds the higher 32 bits of the 64-bit result.

*+ Example 8.12 shows an example of a long unsigned multiply instruction.

ExampLe Thisexample showsasimple multiply instruction that multiplies registers rf and r2together
8.12 and places the result into register r0. In this example, register rl is equal to the value 2, and
r2is equal to 2. The result, 4, is then placed into register r0,

PRE r0 = 0x00000000
rl = 0x00000000

2 = 0xf0000002
r3 = 0x00000002
UMULL 10,r1,r2,r3 ; [rL,r0]=r2*r3

POST 0 = OxeC000004 ;=RdlLo
r1 = 0x00000001 ;=RdHi

CSE, KSSEM 30

MCES 21CS43

Branch Instructions

* A branch instruction changes the flow of execution or is used to call a routine. This
type of instruction allows programs to have subroutines, if-then-else structures, and
loops.

* The change of execution flow forces the program counter pc to point to a new
address. The ARMvV5E instruction set includes four different branch instructions.

Syntax: B{<cond>} label
BL{<cond>} label
BX{<cond>} Rm
BLX{<cond>} 1abel | Rm

B branch pc=label

BL branch with link pc=label
Ir=address of the next instruction after the BL

BX | branch exchange pc=Rm & Oxfffffffe, T=Rm & 1

BLX | branch exchange with link | pc=1label, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

* The address label is stored in the instruction as a signed pc-relative offset and must
be within approximately 32 MB of the branch instruction.

* T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to
Thumb state.

ExamprLe This example shows a forward and backward branch. Because these loops are address
8.13 specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward

ADD rl1, r2, #4

ADD rO, r6, #2

ADD r3, r7, #4
forward

SUB rl, r2, #3

backward
ADD rl1, rz, #4
SUB ri1, r2, #4
ADD r4, r6, r7
B backward

* Branches are used to change execution flow. Most assemblers hide the details of a
branch instruction encoding by using labels.

* In the above example, forward and backward are the labels.

 The branch labels are placed at the beginning of the line and are used to mark an
address that can be used later by the assembler to calculate the branch offset.

CSE, KSSEM 31

MCES 21CS43

ExameLe The branch with link, or BL, instruction is similar to the B instruction but overwrites the
8.14 link register Ir with a return address. It performs a subroutine call, This example shows
a simple fragment of code that branches to a subroutine using the BL instruction. To return

from a subroutine, you copy the link register to the pc.

BL subroutine : branch to subroutine

CmMp ri, # ; compare rl with 5

MOVEQ rl, #0 ; if (ri==5) then rl = 0
subroutine

<subroutine code>

MoV pc, Ir ; return by moving pc = Ir

The branch exchange (BX) instruction uses an absolute address stored in register
Rm. It is mainly used to branch to and from the Thumb code. The T bit of cpsr is
updated by the LSB of the branch register. Similarly the BLX instruction updates the
T bit of the cpsr with LSB and also sets the link register with the return address.

LOAD-STORE INSTRUCTIONS

Load-store instructions transfer data between memory and processor registers. There
are three types of load-store instructions:

* Single-register Transfer.
* Multiple-register Transfer.
* Swap

Single-Register Transfer: These instructions are used for moving a single data item in
and out of a register. The data types supported are

- Signed And Unsigned Words (32-bit).

- Halfwords (16-bit).

- Bytes.

A few load-store single-register transfer instructions are shown below:

Syntax: <LDR|STR>{=<cond>}{B} Rd,addressing!
LDR{<cond=>}SB|H|SH Rd, addressing?
STR{<cond>}H Rd, addressing?

LDR load word into a register Rd <- mem3i2]address]
STR save byte or word from a register Rd -> mem32[address|
LDRB load byte into a register Rd <- mem8faddress]
STRB save byte from a register Rd ~-> mem8[address]
LDRH load haifword into a register Rd <- mem16{address|
STRH save halfword into a register Rd -> miem 16faddress]
LDRSB | load signed byte into a register Rd <- SignExtend

(mem8laddress])

LDRSH | load signed halfword into a register | Rd <- SignExtend

(meml6]address])

CSE, KSSEM 32

MCES 21CS43

ExXAMPLE

8.15

LOR and STR instructions can load and store data on a boundary alignment that is the same
as the datatype size being loaded or stored. For example, LOR can only load 32-bit words on
a memory address that is a multiple of four bytes—0, 4, 8, and so on. This example shows
a load from a memory address contained in register rl, followed by a store back to the same
address in memory.

; load register r0 with the contents of
; the memory address pointed to by register
s rl.

LDR r0, [rl] ; = LDR r0, [rl1, #0]
store the contents of register r0 to

the memory address pointed to by
register rl.

LT

STR r0, [ri] ; = STR rO, [rl, #0]

The first instruction loads a word from the address stored in register r1 and places
itinto register r0. The second instruction goes the other way by storing the contents
of register r0 to the address contained in register r1. The offset from register r1 is
zero. Register r1 is called the base address register.

Single-Register Load-Store Addressing Modes: The ARM instruction set provides different
modes for addressing memory. These modes incorporate one of the indexing methods:

* Preindex With Writeback.

* Preindex.

* Postindex.

Table 8.4

ExamMeLs

8.16

Index methods.

Base address
Index method Data register Example
Preindex with writeback ~ mem[base + offset] base + offset LDR r0,[r1,#4]!
Preindex mem|[base + offset| not updated LDR r0,[r1,#4]
Postindex mem|base] base + offset LDR r0,[r1],#4

Note: ! indicates that the instruction writes the calculated address back to the base address register.

Preindex with writeback calculates an address from a base register plus address offset and
then updates that address base register with the new address. In conteast, the preindex offset
is the same as the preindex with writeback but does not update the address base register.
Postindex only updates the address base register after the address is used. The preindex
mode is useful for accessing an clemeont in a data structure. The postindex and preindex
with writeback modes are useful for traversing an array.

PRE rQ = Ox00000000
rl « Ox00090000
mem32 [0x00000000]1 = Ox01010101
mem32 [Ox00009004] = 0x02020202
LDR rOo, [r1, #4111

Preindexing with writeback:

POST(1) rO = Ox02020202
rl « Ox00009004

LDR ro, [ri, #a]
Proindexing:

POST(2) r0O = Ox0Z020Z02
rl = 0x00009000

LDR rOo. [ri]. #4
Postindexing:

POST(3) r0O « Ox01010101
rl = O0x00009004

CSE, KSSEM

33

MCES 21CS43

Table 8.5 Single-register load-store addressing, word or unsigned byte.

Addressing' mode and index method Addressing' syntax

Preindex with immediate offset
Preindex with register offset
Preindex with scaled register offset Rn, +/-Rm, shift #shift imm]
Preindex writeback with immediate offset Rn, #+/-offset 12]!

[Rn, #+/-0ffset 12]
[
[
(
Preindex writeback with register offset [Rn, +/-Rm]!
[
[
[
|

Rn, +/-Rm]

Preindex writeback with scaled register offset Rn, +/-Rm, shift #shift imm]!
Immediate postindexed Rn], #+/-offset 12

Register postindex Rn], +/-Rm

Scaled register postindex Rn], +/-Rm, shift #shift imm

+ Example 8.15 used a pre index method. This example shows how each indexing
method effects the address held in register r1, as well as the data loaded into register
ro.

* Each instruction shows the result of the index method with the same pre-condition.

* The addressing modes available with a particular load or store instruction depend
on the instruction class.

* Table 8.5 shows the addressing modes available for load and store of a 32-bit word
or an unsigned byte.

* A signed offset or register is denoted by “+/-", identifying that it is either a positive
or negative offset from the base address register Rn. The base address register is a
pointer to a byte in memory, and the offset specifies a number of bytes.

* Immediate means the address is calculated using the base address register and a 12-
bit offset encoded in the instruction.

* Register means the address is calculated using the base address register and a
specific register’s contents.

* Scaled means the address is calculated using the base address register and a barrel
shift operation.

* Table 8.6 provides an example of the different variations of the LDR instruction.

* Table 8.7 shows the addressing modes available on load and store instructions using
16-bit halfword or signed byte data. These operations cannot use the barrel shifter.
There are no STRSB or STRSH instructions since STRH stores both a signed and
unsigned halfword; similarly STRB stores signed and unsigned bytes.

« Table 8.8 shows the variations for STRH instructions.

CSE, KSSEM 34

MCES 21CS43

Table 8.6 Examples of LDR instructions using different addressing modes.

Instruction = rl+ =
Preindex LOR r0,[rl,#0x4]! mem32{rl +0x4] Ox4
with
writeback

LOR r0,[r1,r2]! mem32{ri+r2] re

LOR r0,[rl,r2,LSR#0x4]! mem32{rl+ (r2 LSR 0x4)] (r2 LSR 0x4)
Preindex LOR r0,[r1,#0x4] mem32{rl+0x4] not updated

LOR r0, [r1,r2] mem32{rl+r2] not updated

LOR r0,[rl,-r2,LSR #0x4] mem32{rl-(r2 LSR 0x4)] not updated
Postindex LOR r0, [r1],#0x4 mem32{ri1] 0x4

LOR r0,[r1],r2 mem32{ri1] r2

LOR r0,[r1],r2,LSR #0x4 mem32{r1] (r2 LSR 0x4)

Table 8.7 Single-register load-store addressing, halfword, signed halfword, signed byte, and
doubleword.

Addressing® mode and index method Addressing® syntax
Preindex immediate offset [Rn, #+/-0ffset 8]
Preindex register offset [Rn, +/-Rm)

Preindex writeback immediate offset [Rn, #+/-0ffset 8]!
Preindex writeback register offset [(Rn, +/<Rm]!
Immediate postindexed [Rn], #+/-0ffset 8
Register postindexed [Rn], +/-Rm

Table 8.8 Variations of STRH instructions.

Instruction Result rl 4 =
Preindex with STRH r0, [rl1,#0x4]! mem16{r1+0x4]=r0 Ox4
writeback

STRH rO,[rl,r2]! meml6[rlser2] =r0 r
Preindex STRH rO,[rl,#0x4) meml6[r1+0x4] =r0 not updated

STRH r0,[r1,r2) meml6[r1+r2] =r0 not updared
Postindex STRH r0,[r1],70x4 meml6[rl]=ro 0Ox4

STRH r0,[r1],r2 meml6{rl)=ro r2

Multiple-Register Transfer

Load-store multiple instructions can transfer multiple registers between memory
and the processor in a single instruction. The transfer occurs from a base address
register Rn pointing into memory.

Multiple-register transfer instructions are more efficient than single-register transfers
for moving blocks of data around memory and saving and restoring context and stacks.

Load-store multiple instructions can increase interrupt latency. ARM
implementations do not usually accept interrupt instructions while they are
executing.

For example, on an ARM7 a load multiple instruction takes 2 + Nt cycles, where N is
the number of registers to load, t is the number of cycles required for each sequential
access to memory.

If an interrupt has been raised, then it has no effect until the load-store multiple
instruction is complete. Compilers, such as armcc, provide a switch to control the

CSE, KSSEM 35

MCES 21CS43

maximum number of registers being transferred on a load-store, which limits the
maximum interrupt latency.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{"}

LDM | load multiple registers [RA}*N <- mem32[start address + 4*N| optional Rn updated

STM | save multiple registers [RA}*N > mem32[start address + 4*N| optional Rn updated

In table 8.9 N is the number of registers in the list of registers. Any subset of the current
bank of registers can be transferred to memory or fetched from memory.The base
register Rn determines the source or destination address for a load-store multiple
instruction. This register can be optionally updated following the transfer. This occurs
when register Rn is followed by the ‘!’ character, similar to the single register load-store
using pre-index with writeback.

Table 8.9 Addressing mode for load-store multiple instructions.

Addressing

mode Description Start address End address Rn!

IA increment after Rn Run+4*N —4 Rn+ 4*N
IB increment before Rmn+ 4 Rn + 4*N Rn+ 4*N
DA decrement after Rnn—4*N 4+ 4 Rn Rn — 4*N
0B decrement before Rt — 4*N Rnu— 4 Rn — 4*N

ExaMmeLE In this example, register 10 is the base register Rn and is followed by !, indicating that the
8.17 register is updated after the instruction is executed. You will notice within the load multiple
instruction that the registers are not individually listed. Instead the “-" character is used to
identify a range of registers. In this case the range is from register r/ to r3 inclusive.
Each register can also be listed, using a comma to separate each register within
“1™ and "}" brackets.

PRE mem32 [0x80018] = 0x03
mem32 [0x80014] = 0x02

mem32 [OxB0010] = 0x01
r0 = Ox00080010
rl = Ox00000000
r2 = 0x00000000
r3 = 0x00000000

LDMIA rO1l, (rlerl)

POST r0 = Ox0008001c¢
rl » OXx00000001
rZ » 0x00000002
rl » Ox00000003

Fig.8.3 shows a graphical representation. The Base register rO points to memory
address 0x80010 in the PRE-condition. Memory addresses 0x80010, 0x80014, and
0x80018 contain the values 1,2, and 3 respectively. After the load multiple
instruction executes registers rl, r2, and r3 contain these values as shown in 8.4.
The base register rO now points to memory address 0x8001c after the last loaded
word.

CSE, KSSEM 36

MCES 21CS43

NMemaory

Addeess pointer wddress Date
Ox 00000005
1€ | Ox00000004
Ox 00000003 r & = 0x00000000
14 | OxO0000002 r2 = Ox00000000
P o OXBOOLIO - Ox 00000001 r/ = Ox00000000
O Ox 00000000

Figure 8.3 Pre-condition for LOMIA instruction.

NMoemory
Adddross prointor address Date
s Ox 0000000
PO = OXROOLc = | ORBOOIE | OXx00000004
» O = O0000000 > 2w On00000002

Wb

OxB80014 O x 0000000 2w Ox00000002
OXx80010 O x 0000000 3 w7 = OxO0000000 1)
OxBO000C Ox 00000000

Figgure 8.4 Post-condition for LOMIA instruction,

NMoemory
Addroas peosintor wdddress Date
[T OxBO00 Ox000O000%

70 = OXROOIc o | OXBOOIE | OXO0OOO00A | +.¢ = Ox00000004
™ 3 OXOOOOV00S | r2 = OX00000003

[OXBO01a | Ox00000002 | +7 = 000000002
OxBO0010 | Ox0000000 1
OxBO00C O x 00000000

ure 8.5 Post-condition for LDMIB instruction.

F

&-

For the same pre-conditions, use LDMIB-Load Multiple Increment before. The first word
pointed by register r0 is ignored and register r1 is loaded from the next memory location
as shown in fig-3.5. After execution, register rO now points to the last loaded memory
location. This is opposite to LDMIA example, which pointed to the next memory location.

Table 8.10 Load-store multiple pairs when base update used.

Storce multiple Load multiple
STMIA LDMDB
sSTMIB LDMDA
STMDA LDMIB
STMDB LOMIA

Table 8.10 shows a list of load-store multiple instruction pairs. If a store is used with base
update, then the paired load instruction of the same number of registers will reload the
data and restore the base address pointer. This is useful to store a group of registers
temporarily and restore them later.

CSE, KSSEM 37

MCES 21CS43

EXAMPLE

8.18

EXAMPLE

8.19

This example shows an STM increment before instruction followed by an LOM decrement after

imnstruction,
PRE r0 = Ox00009000
rl = 0x00000009

r2 = 0x00000008
r3 = Ox00000007

STMIB ro!, (r1-rl3)

MOV ri, #1
MOV re, #2
MOV r3, #3

PRE(2) r0 = 0x0000900c¢c
rl Ox00000001
rz2 Ox00000002
r3 = O0x00000003

LOMDA rO!, (rl-ry}

POST ro = 0x00009000
rl = Ox00000009
r2 = 0x00000008
r3 = Ox00000007

The STMIB instruction stores the values 7, 8, 9 to memory, We then corrupt register rf to r3.
The LDMDA reloads the original values and restores the base pointer r0.

We illustrate the use of the load-store multiple instructions with a block memory copy
example. This example is a simple routine that copies blocks of 32 bytes from a source
address location to a destination address location.

The example has two load-store multiple instructions, which use the same increment
after addressing mode.

;s r9 points to start of source data
; rl0 points to start of destination data
; rll points to end of the source

loop
; load 32 bytes from source and update r9 pointer
LDMIA r9t, {(ro-r7)

; store 32 bytes to destination and update rl0 pointer
STMIA rio!, {[{r0-r7} ; and store them

; have we reached the end
CMP rg, rilil
BNE lToop

This routine relies on registers r9, r10, and r11 being set up before the code is
executed. Registers r9 and r11 determine the data to be copied, and register r10
points to the destination in memory for the data. LDMIA loads the data pointed to
by register r9 into registers r0 to r7. It also updates r9 to point to the next block of
data to be copied.

STMIA copies the contents of registers r0 to r7 to the destination memory address
pointed to by register r10. It also updates r10 to point to the next destination
location. CMP and BNE compare pointers r9 and r11 to check whether the end of the
block copy has been reached. If the block copy is complete, then the routine

CSE, KSSEM

38

MCES 21CS43

finishes; else the loop repeats with the updated values of register r9 and r10. BNE is
the branch instruction B with a condition mnemonic NE (not equal).

Fig-8.6 shows the memory map of the block memory copy and how the routine
moves through memory. This loop can transfer 32 bytes i.e. 8 words in two
instructions, for a maximum possible throughput of 46 MB/second being
transferred at 33 Mhz.

High memory

rll

‘ Source

Copy
mcmoy

location

Destination |-
rlo

Low memory

Figure 8.6 Block memory copy in the memory map.

Stack Operations

The ARM architecture uses the load-store multiple instructions to carry out stack
operations.

The pop operation (removing data from stack) uses a load multiple instruction;
similarly, the push operation (placing data onto the stack) uses a store multiple
instruction.

When using a stack you have to decide whether the stack will grow up or down in
memory. A stack is either ascending (A) or descending (D). Ascending stacks grow
towards higher memory addresses; in contrast, descending stacks grow towards
lower memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the
last used or full location (i.e., sp points to the last item on the stack).

In contrast, if you use an empty stack (E) the sp points to an address that is the first
unused or empty location (i.e., it points after the last item on the stack).

CSE, KSSEM 39

MCES 21CS43

Examere The STMFD instruction pushes registers onto the stack, updating the sp. Figure 8.7 shows
8.20 »pushontoa full descending stack. You can see that when the stack grows the stack pointer
points to the last full entry in the stack.

PRE rl = Ox00000002
r4 = Ox00000003
=p =~ Ox00080014

STMFD spl, {ri,r3}

Table 8,11 Addressing methods for stack operations.

Addressing mode Description Pop = LDM Push = STM
FA full ascending LOMFA LOMDA STMFA STMIB
FD full descending LOMFD LDMIA STMFD STMDB
EA empty ascending LDMEA LOMDB STMEA STMIA
ED empty descending LOMED LOMIB STMED STMDA
PRE Address Data POST Address Dala

OX80016 | Ox00000001 Ox80018 | Ox00000001
spr = | OXBO014 | OX00000007 Ox80014 | Ox00000002

OXB800310 | Lrprey Ox80010 | Ox0000G0003

OxXB000C | Foyprsy s —= | OXBO00EC | Ox00000002

Figure 8.7 STMFD instruction—{full stack push operation.

POST *1l = Ox00000002
r4 = 0Ox00000003
sPp = O0x0008000c

ExampPLe In contrast, Figure 3.8 shows a push operation on an empty stack using the STMED instruc-
8.21 tion. The STMED instruction pushes the registers onto the stack but updates register sp to
point to the next empty location,

PRE rl = 0x00000002
rd =~ Ox00000003
sp = 0x00080010

STMED spl, (ri,ra)
POST rl = DOx00000002

r4d = 0Ox00000003
sp = Ox00080008

PRE Address Data POST Address Data
ox80018 | 0x00000001 0x80018 | 0x00000001
0x80014 | 0x00000002 0x80014 | 0x00000002

sp —= | ©x80010 | Enmprs 0x80010 | 0x00000003
OX8000¢ | Ermpty DX8000¢ | 0x00000002
OX80008 | Ewpry spr e | OXBO0OB | Ermprry

Figurc 8.8 STMED instruction—empty stack push operation.

When handling a checked stack 3 attributes have to be preserved, i.e. the stack base,
the stack pointer, and the stack limit. Stack base is the starting address of the stack
in memory. Stack pointer initially points to the stack base; as data is pushed onto
the stack, the stack pointer descends memory and continuously pointsto the top of
stack. If the stack pointer passes the stack limit, then a stack overflow error occurs.
Ex: To check for stack overflow

SUB sp, sp, #size

CMP sp, r10

BLLO_stack_overflow; condition.

CSE, KSSEM 40

MCES 21CS43

SWAP INSTRUCTION

« The swap instruction is a special case of a load-store instruction. It swaps the
contents of memory with the contents of a register.

* This instruction is an atomic operation—it reads and writes a location in the same
bus operation, preventing any other instruction from reading or writing to that
location until it completes.

* This instruction is mainly useful for implementing semaphores and mutual
exclusion in an operating system. It allows both a byte and a word swap.

Syntax: SWP{8){<cond>) Rd,Rm,[Rn]

SWP swap a word between memory and a register | trmp = mem32{Rn|
mem32[Rnl =Rm
Rd = tmp

SWPB | swap a byte between memory and a register tmp = mem8{Rn|
memS{Rn| = Rm
Rd = tmp

Swap cannot be interrupted by any other instruction or any other bus access. We say
the system “holds the bus™ until the transaction is complete.,

ExameLE The swap instruction loads a word from memory into register r0and overwrites the memory
8.22 ith register rl.

PRE mem32 [0x9000] = 0x12345678
r0 = 0x00000000
rl = 0x11112222
r2 = 0x00009000

SWP ro, ri, [r2]
POST mem32[0x9000] = 0x11112222
r0 = 0x12345678

rl = Ox11112222
rZz = 0x00009000

SOFTWARE INTERRUPT INSTRUCTION

A software interrupt instruction (SWI) causes a software interrupt exception, which
provides a mechanism for applications to call operating system routines.

Syntax: SWI{<cond>} SWI number

SWI software interrupt Ir_sve= address of instruction following the SWI
SPSr_svc=— cpsr

pc=vectors + 0x8

cpsr mode = SVC

cpsr I= 1 (mask IRQ interrupts)

* When the processor executes an SWI instruction, it sets the program counter pc to
the offset 0x8 in the vector table. The instruction also forces the processor mode to
SVC, which allows an operating system routine to be called in a privileged mode.

 Each SWI instruction has an associated SWI number, which is used to represent a
particular function call or feature

CSE, KSSEM 41

MCES 21CS43

ExampPLeE Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM
8.24 oolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.

PRE cpsr = nzcVqift USER
pc = Ox00008000
1r = Ox00371711T; 1r = ri4
rO = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqlft_SVC
spsr » nzcVqift_ USER
pc = 0x00000008
Ir = 0x00008004
ro = 0x12

* Since SWI instructions are used to call operating system routines, you need some
form of parameter passing. This is achieved using registers.

* In this example, register r0 is used to pass the parameter 0x12. The return values
are also passed back via registers. Code called the SWI handler is required to process
the SWI call.

* The handler obtains the SWI number using the address of the executed instruction,
which is calculated from the link register Ir.

* The SWI number is determined by SWI_Number = <SWI instruction> AND NOT (Oxff
000000). Here the SWI instruction is the actual 32-bit SWI instruction executed by
the processor.

EXAMPLE Ihis example shows the start of an SWI handier implementation. The code fragment deter-
8.25 mines what SWI number is being called and places that number into register 70, You can
sce from this example that the load instruction first copies the complete SWI instruction
into register r70. The BIC instruction masks off the top bits of the instruction, leaving the
SWI numbcer. We assume the SWI has been called from ARM state,

SWI_handler

: Store registers rO-rl2 and the link register

STMFD spl, (ro-ri12, 1r}

: Read the SWI Instruction

LDR rio, [1r. »-a)

: Mask off top 8 bits

BicC rio, 10, #OxTrroooocoo
r10 - contains the SWI number

BL service routine

return from SWI handler
LOMFD sp!, {(ro-ri12, pc}-

The number in register r40 is then used by the SWI handler to call the appropriate SWi1
sCrvice routine.

PROGRAM STATUS REGISTER INSTRUCTIONS

« The ARM instruction set provides two instructions to directly control a program
status register (psr).

« The MRS instruction transfers the contents of either the cpsr or spsr into a register;
in the reverse direction.

« The MSR instruction transfers the contents of a register into the cpsr or spsr.
* Together these instructions are used to read and write the cpsr and spsr.

« The syntax has a label called fields. This can be any combination of control (c),
extension (x), status (s), and flags (f).

* These fields relate to particular byte regions in a psr, as shown in Figure 3.9.

CSE, KSSEM 42

MCES 21CS43

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr> <fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>, #immediate

Ficlds Flags [24:31] Status [16:23] ¢Xtension [8:15] Conurol [0:7]

I d
L - . w 1
Bit 3130292 7654 0
N|Z|CV HFIT] Mode
Figure 8.9 psrbyte fields.
MRS | copy program status register to a gencral-purpose register Rd = psr

MSR | move a general-purpose register to a program status register | pse/field] = Rm

MSR | move an immediate value to a program status register psrificld] = immediate

The ¢ field controls the interrupt masks, Thumb state, and processor mode.
Example 3.26 shows how to enable IRQ interrupts by clearing the I mask. This opera-
tion involves using both the MRS and MSR instructions to reéad from and then write to
the cpsr.

ExamMmpPLe The MSR first copies the ¢psrinto register r1. The BIC instruction clears bit 7 of rl. Register
8.26 i is then copied back into the ¢psr, which enables IRQ interrupts, You can see from this
example that this code preserves all the other settings in the ¢psr and only modifies the I bit

in the control field,

PRE cpsr = nzcvqlFt_SVC
MRS rl, cpsr
BIC rl, rl, #0x80 ; 0b0O1000000
MSR cpsr_c, rl

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all ¢psr bits, but you can only
update the condition flag ficld [

Coprocessor Instructions

* Coprocessor instructions are used to extend the instruction set.

* A coprocessor can either provide additional computation capability or be used to
control the memory subsystem including caches and memory management.

* The coprocessor instructions include data processing, register transfer, and memory
transfer instructions.

Syntax: CDP{=cond>) cp, opcodel, Cd, Cn (, opcode2)
“MRC |[MCR>{=<cond>)} cp, opcodel, Rd, Cn, Cm {, opcode2)
<LDC|STC>(=cond>} cp, Cd, addressing

cop coprocessor data processing—perform an operation in a coprocessor

MRC MCR [coprocessor register transfer—move data to/from coprocessor registers

LDC STC | coprocessor memory transfer—load and store blocks of memory to/from a coprocessor

CSE, KSSEM 43

MCES 21CS43

* In the syntax of the coprocessor instructions, the cp field represents the coprocessor
number between p0 and p15.

* The opcode fields describe the operation to take place on the coprocessor.
* The Cn, Cm, and (Cd fields describe registers within the coprocessor.

* The coprocessor operations and registers depend on the specific coprocessor you
are using. Coprocessor 15 (CP15) is reserved for system control purposes, such as
memory management, write buffer control, cache control, and identification registers.

ExampLE This example shows a CP15 register being copied into a general-purpose register.
8.27

; transferring the contents of CP15 register c0 to register ri0
MRC pl5, 0, rl0, c0, ¢c0, O

Here CP15 register-0 contains the processor identification number. This register is copied
into the general-purpose register r10.

LOADING CONSTANTS

In ARM processor, there is no instruction to move a 32-bit constant into a register.
But there are two pseudo instructions to move a 32-bit value into a register as below.

Syntax: LDR Rd, =constant
ADR Rd, label

LOR | load constant pscudoinstruction | Rd= 32-bit constant

ADR | load address pseudoinstruction Rd = 32-bit relative address

* The first pseudo instruction writes a 32-bit constant to a register using whatever
instructions are available. It defaults to a memory read if the constant cannot be
encoded using other instructions.

* The second pseudo instruction writes a relative address into a register, which will

be encoded using a pc-relative expression.

Exampre This example shows an LDR instruction loading a 32-bit constant OxffOOffff into
8.28 register 10,

LDR r0, [pc, #constant number-8-(PC}]

constant_number
0co OxfrO0ffff

This example involves a memory access to load the constant, which can be expensive for
time-critical routines,

Example 3.29 shows an alternative method to load the same constant into register r0 by
using an MVN instruction,

Table 8 12 LDR pscudoinstruction conversion.
Psceudoinstruction Actual instruction
LDR rO, =OxTfT MOV rO, #OxTT

LDR rO, =0x55555555 LDR rO, [pc, H#offset 12]

CSE, KSSEM 44

MCES 21CS43

EXAMPLE Loading the constant OXffOOTFfff using an MVN.

8.29
PRE none. ..
MVN ro, #0x00T1rr0000
POST rO « OxTTOOTTTT

* As can be seen above, there are alternatives to access memory, but they depend upon
the constant you are trying to load.

« Compilers and assemblers use clever techniques to avoid loading a constant from
memory.

* These tools have algorithms to find the optimal number of instructions required to
generate a constant in a register and make extensive use of the barrel shifter.

« If the tools cannot generate the constant by these methods, then it is loaded from
memory.

* The LDR pseudo instruction either inserts an MOV or MVN instruction to generate a
value (if possible) or generates an LDR instruction with a pc-relative address to read
the constant from a literal pool—a data area embedded within the code.

« Table 8.12 shows two pseudo code conversions. The first conversion produces a
simple MOV instruction; the second conversion produces a pc-relative load.

* Another useful pseudo instruction is the ADR instruction, or address relative. This
instruction places the address of the given label into register Rd, using a pc-relative
add or subtract.

*« As you can see, there are alternatives to accessing memory, but they depend upon
the constant you are trying to load.

*+ Compilers and assemblers use clever techniques to avoid loading a constant from
memory.

* These tools have algorithms to find the optimal number of instructions required to
generate a constant in a register and make extensive use of the barrel shifter.

» If the tools cannot generate the constant by these methods, then it is loaded from
memory.

* The LDR pseudo instruction either inserts an MOV or MVN instruction to generate
a value (if possible) or generates an LDR instruction with a pc-relative address to
read the constant from a literal pool—a data area embedded within the code.

* Table 8.12 shows two pseudocode conversions. The first conversion produces a
simple MOV instruction; the second conversion produces a pc-relative load.

* Another useful pseudo instruction is the ADR instruction, or address relative. This
instruction places the address of the given label into register Rd, using a pc-relative
add or subtract.

3k 3k 3k ok ok Rk >k 3k ok sk ok sk >k >k sk k ok

CSE, KSSEM 45

Microcontroller and Embedded Systems

CHAPTER-2 : C COMPILERS AND OPTIMIZATION

e Optimizing code takes time and reduces source code readability. Usually, it’s only worth
optimizing functions that are frequently executed and important for performance.

e We recommend you use a performance profiling tool. found in most ARM simulators, to
find these frequently executed functions.

e Document nonobvious optimizations with source code comments to aid maintainability.

e C compilers have to translate your C function literally into assembler so that it works for
all possible inputs.

® [n practice, many of the input combinations are not possible or won’t occur. Let’s start by
looking at an example of the problems the compiler faces.

e The memclr function clears N bytes of memory at address data.

void memclr(char *data, int N)
{
for (; N>0; N--)
{
*data=0;
data++;

e No matter how advanced the compiler, it does not know whether N can be 0 on input or
not. Theretfore the compiler needs to test for this case explicitly before the first iteration
of the loop.

e The compiler doesn’t know whether the data array pointer is four-byte aligned or not. If it
is four-byte aligned, then the compiler can clear four bytes at a time using an int store
rather than a char store.

e Nor does it know whether N is a multiple of four or not. If N is a multiple of four, then
the compiler can repeat the loop body four times or store four bytes at a time using an int
store.

To keep our examples concrete, we have tested them using the following specific C compilers:

Microcontroller and Embedded Systems

% armcc from ARM Developer Suite version 1,1 (ADSI1.1). You can license this compiler,
or a later version. directly from ARM.

% arm-elf-gce version 2.95.2. This is the ARM target for the GNU C compiler, gee, and is
freely available.

We have used armcc from ADSI.1 to generate the example assembler output in this book. The

following short script shows you how to invoke armce on a C file test.c. You can use this to

reproduce our examples.

ammcc -Otime -c -0 test.o test.c
fromelf -text/c test.o > test.txt

By default armee has full optimizations turned on (the -02 command line switch). The -Otime
switch optimizes for execution efficiency rather than space and mainly affects the layout of for
and while loops. If you are using the gcc compiler, then the following short script generates a

similar assembler output listing:

am-elf-gcc -02 -fomit-frame-pointer -c -0 test.o test.c
amm-elf-objdump -d test.o > test.txt

Basic C Data Types

ARM supports operations on different data types.
The data types we can load (or store) can be signed and unsigned words, halfwords, or bytes. The
extensions for these data types are: -h or -sh for halfwords, -b or -sb for bytes, and no extension
for words. The difference between signed and unsigned data types is:
Signed data types can hold both positive and negative values and are therefore lower in range.
Unsigned data types can hold large positive values (including “Zero”) but cannot hold negative
values and are therefore wider in range.

® ARM processors have 32-bit registers and 32-bit data processing operations. The ARM

architecture is a RISC load/store architecture.

Microcontroller and Embedded Systems

e In other words you must load values from memory into registers before acting on them.

There are no arithmetic or logical instructions that manipulate values in memory directly.

Load and store instructions by ARM architecture.

Architecture Instruction Action
Pre-ARMv4 LDRB load an unsigned 8-bit value
STRB store a signed or unsigned 8-bit value
LDR load a signed or unsigned 32-bit value
STR store a signed or unsigned 32-bit value
ARMv4 LDRSB load a signed 8-bit value
LDRH load an unsigned 16-bit value
LDRSH load a signed 16-bit value
STRH store a signed or unsigned 16-bit value
ARMVS5 LDRD load a signed or unsigned 64-bit value
STRD store a signed or unsigned 64-bit value

e The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores
directly, through new instructions

e ARMVS5 adds instruction support for 64-bit load and stores. This is available in ARMO9E
and later cores.

e Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than a
signed 8-bit value as is typical in many other compilers.

o Compilers armcce and gee use the datatype mappings

e A common example is using a char type variable i as a loop counter, with loop
continuation condition i > 0.

e As iisunsigned for the ARM compilers, the loop will never terminate. Fortunately armcc

produces a warning in this situation: unsigned comparison with (.

Microcontroller and Embedded Systems

e Compilers also provide an override switch to make char signed. For example, the
command line option -fsigned-char will make char signed on gec.

e The command line option -z¢ will have the same effect with armcc.

C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte
short signed 16-bit halfword
int signed 32-bit word
long signed 32-bit word
long long signed 64-bit double word
Local Variable Types
° ARMv4-based processors can efficiently load and store 8-, 16-. and 32-bit data. However,

most ARM data processing operations are 32-bit only.

° For this reason, you should use a 32-bit datatype, int or long, for local variables wherever
possible.
° Avoid using char and short as local variable types, even if you are manipulating an 8- or

16-bit value.

Microcontroller and Embedded Systems

int checksum vl(int *data)

{
char i;
int sum=0;

for (i=0; 1<64; i++)
{

sum += data[i];

)

return sum;

Consider the compiler output for this function. We’ve added labels and com-
ments to make the assembly clear.

checksum vl

MOV r2,r0 ; r2 = data

MOV ro, #0 3 sum = 0

MOV rl,#0 ;3 1 =0
checksum vl _Toop

LDR r3,[r2,r1,LSL #2] ; r3 = data[i]

ADD rl,rl,#1 3 Tl = 1#]

AND rl,rl,#0xff ;3 1 = (char)rl

CMP rl,#0x40 ; compare i, 64

ADD ro,r3,r0 3 sum += r3

BCC checksum v1_loop ; if (i<64) loop

MOV pc,rld 3 return sum

Now compare this to the compiler output where instead we declare i as an un-

signed int.

checksum v2

MOV r2,r0 s r2 = data

MOV ro,#0 ; sum = 0

MOV rl,#0 3 1 =0
checksum_v2_loop

LDR r3,[r2,r1,LSL #2] ; r3 = data[i]

ADD rl,rl,#1 380 1 &g

CMP rl,#0x40 ; compare i, 64

ADD rO,r3,r0 ; sum += r3

BCC checksum_v2_ loop ; if (i<64) goto loop

MOV pc,rld return sum

Microcontroller and Embedded Systems

In the first case, the compiler inserts an extra AND instruction to reduce i to the
range 0 to 255 before the comparison with 64. This instruction disappears in the
second case.

Next, suppose the data packet contains 16-bit values and we need a 16-bit

checksum. It is tempting to write the following C code:

short checksum v3(short *data)

{
unsigned int i;
short sum=0;

for (i=0; i<64; i++)
{

sum = (short) (sum + data[i]);

}
return sum;

}

The loop is now three instructions longer than the loop for example checksum_v2 earlier! There
are two reasons for the extra instructions:
e The LDRH instruction does not allow for a shifted address offset as the [LDR instruction
did in checksum_v2. Therefore the first ADD in the loop calculates the address of item i
in the array. The LDRH loads from an address with no offset. LDRH has fewer
addressing modes than LDR as it was a later addition to the ARM instruction set.
e The cast reducing total +array|i] to a short requires two MOV instructions. The compiler
shifts left by 16 and then right by 16 to implement a 16-bit sign extend. The shift right is

a sign-extending shift so it replicates the sign bit to fill the upper 16 bits.

Microcontroller and Embedded Systems

EXAMPLE 5.1

checksum v4

The *(data++) operation translates to a single ARM instruction that loads the
data and increments the data pointer. Of course you could write sum += *data;
data++; or even *data++ instead if you prefer. The compiler produces the follow-
ing output. Three instructions have been removed from the inside loop, saving

three cycles per loop compared to checksum_v3.

MOV r2,#0 3 sum = 0

MOV rl,#0 : ¥ =0
checksum_v4 loop

LDRSH r3,[r0],#2 ; r3 = *(data++)

ADD rl,rl,#1 ; 1+e

CMP rl,#0x40 3 compare i, 64

ADD r2,r3,re 3 sum += r3

BCC checksum v4 loop ; if (sum<64) goto loop

MOV ro,r2,LSL #16

MOV r0,r0,ASR #16 ; O = (short)sum

MOV pc,rld ; return r0

The checksum_v4 code fixes all the problems we have discussed in this section. It
uses int type local variables to avoid unnecessary casts. It increments the

pointer data instead of using an index offset datal[i].

short checksum v4(short *data)

{
unsigned int i;
int sum=0;

for (i=0; i<64; i++)
{

sum += *(data++);
}

return (short)sum;

Microcontroller and Embedded Systems

FUNCTION ARGUMENT TYPES
Consider the following simple function, which adds two 16-bit values, halving the second, and

returns a 16-bit sum:

short add vl(short a, short b)

{

return a + (b>>1);

e The input values a, b, and the return value will be passed in 32-bit ARM registers. Should
the compiler assume that these 32-bit values are in the range of a short type, that is,
—32.768 to +32.767?

e Or should the compiler force values to be in this range by sign-extending the lowest 16
bits to fill the 32-bit register?

e The compiler must make compatible decisions for the function caller and callee. Either
the caller or callee must perform the cast to a short type.

e [f the compiler passes arguments wide, then the callee must reduce function arguments to
the correct range. If the compiler passes arguments narrow, then the caller must reduce
the range.

e I the compiler returns values wide, then the caller must reduce the return value to the
correct range. 1f the compiler returns values narrow, then the callee must reduce the range

before returning the value.

Microcontroller and Embedded Systems

For armcc in ADS, function arguments are passed narrow and values returned
narrow. In other words, the caller casts argument values and the callee casts re-
turn values. The compiler uses the ANSI prototype of the function to determine
the datatypes of the function arguments.

The armcc output for add_v1 shows that the compiler casts the return value to a
short type, but does not cast the input values. It assumes that the caller has al-
ready ensured that the 32-bit values re and r1 are in the range of the short type.

This shows narrow passing of arguments and return value.

add_vl
ADD r0,r0,r1,ASR #1 ; 0 = (int)a + ((int)b>>1)
MoV rO,r0,LSL #16
MOV r0,r0,ASR #16 3 r0 = (short)r0
MOV pc,rl4 3 return r0

The gcc compiler we used is more cautious and makes no assumptions about
the range of argument value. This version of the compiler reduces the input argu-
ments to the range of a short in both the caller and the callee. It also casts the re-

turn value to a short type. Here is the compiled code for add_v1:

add_vl_gcc
MOV r0, r0, LSL #16
MoV rl, rl, LSL #16

MOV rl, rl, ASR #17 ; rl = (int)b>>1
ADD rl, rl, r0, ASR #16 ; rl += (int)a
MOV rl, rl, LSL #16

MOV r0, rl, ASR #16 s 10 = (short)rl

MOV pc, Ir ; return r0

Microcontroller and Embedded Systems

SIGNED VERSUS UNSIGNED TYPES

If your code uses addition, subtraction, and multiplication, then there is no per-
formance difference between signed and unsigned operations. However, there is
a difference when it comes to division. Consider the following short example that

averages two integers:
int average vl(int a, int b)
{

return (a+b)/2;
)

This compiles to

average vl
ADD r0,r0,rl ;r0O=a+b
ADD r0,r0,r0,LSR #31 3 1 (r0<0) ro++
MoV r0,r0,ASR #1 ;3 r0 = r0o>>1
MOV pc,rild ; return r0

Notice that the compiler adds one to the sum before shifting by right if the sum

is negative. In other words it replaces x/2 by the statement:

(x<0) 7 ((x+1)>>1): (x>>1)

It must do this because x is signed. In C on an ARM target, a divide by two is not
a right shift if x is negative. For example, -3 = 1 = -2 but -3/2 = 1. Division rounds

towards zero, but arithmetic right shift rounds towards —.

It is more efficient to use unsigned types for divisions. The compiler converts unsigned power of
two divisions directly to right shifts. For general divisions, the divide routine in the C library is

faster for unsigned types.

Microcontroller and Embedded Systems

SUMMARY: The Efficient Use of C Types

W For local variables held in registers, don’t use a char or short type unless 8-bit or
16-bit modular arithmetic is necessary. Use the signed or unsigned int types in-

stead. Unsigned types are faster when you use divisions.

W For array entries and global variables held in main memory, use the type with the
smallest size possible to hold the required data. This saves memory footprint. The
ARMv4 architecture is efficient at loading and storing all data widths provided
you traverse arrays by incrementing the array pointer. Avoid using offsets from
the base of the array with short type arrays, as LDRH does not support this.

W Use explicit casts when reading array entries or global variables into local vari-
ables, or writing local variables out to array entries. The casts make it clear that
for fast operation you are taking a narrow width type stored in memory and ex-

panding it to a wider type in the registers. Switch on implicit narrowing cast
warnings in the compiler to detect implicit casts.

B Avoid implicit or explicit narrowing casts in expressions because they usually cost
extra cycles. Casts on loads or stores are usually free because the load or store in-

struction performs the cast for you.

B Avoid char and short types for function arguments or return values. Instead use

the int type even if the range of the parameter is smaller. This prevents the com-

piler performing unnecessary casts.

Microcontroller and Embedded Systems

C LOOPING STRUCTURES

LOOPS WITH A FIXED NUMBER OF ITERATIONS

Below code shows how the compiler treats a loop with incrementing count 1++.

int checksum v5(int *data)

{
unsigned int i;
int sum=0;

for (i=0; 1<64; i++)
{

sum += *(data++);
}

return sum;

}

This compiles to

checksum_v5

MOY rz,r0 ;s r2 = data

MOV r0,#0 ; sum = 0

MOV rl,#0 3 1 =0
checksum_v5 Toop

LDR r3,[r2],#4 ; r3 = *(data++)

ADD rl,rl,#1 s s

CMP rl,#0x40 ; compare i, 64

ADD rO,r3,r0 3 sum += r3

BCC checksum v5 loop ; if (i<64) goto loop

MOV pc,rld ; return sum

It takes three instructions to implement the for loop structure:

B An ADD to increment i

m A compare to check if i is less than 64

B A conditional branch to continue the loop if i < 64

Microcontroller and Embedded Systems

This is not efficient. On the ARM, a loop should only use two instructions:

B A subtract to decrement the loop counter, which also sets the condition code flags

on the result
B A conditional branch instruction

The key point is that the loop counter should count down to zero rather than
counting up to some arbitrary limit. Then the comparison with zero is free since
the result is stored in the condition flags. Since we are no longer using i as an ar-

ray index, there is no problem in counting down rather than up.

e For an unsigned loop counter i we can use either of the loop continuation conditions
il=0ori>0.

« As i can’t be negative, they are the same condition. For a signed loop counter, it is
tempting to use the condition 1>0 to continue the loop.

e You might expect the compiler to generate the following two instructions to implement
the loop:

SUBS rl,rl,#1 ; compare i with 1, i=i-l
BGT loop if (i+1>1) goto loop

LOOPS USING A VARIABLE NUMBER OF ITERATIONS

Now suppose we want our checksum routine to handle packets of arbitrary size. We pass in a
variable N giving the number of words in the data packet. Using the lessons from the last section

we count down until 1 = 0 and don’t require an extra loop counter i.

The checksum v7 example shows how the compiler handles a for loop with a variable

number of iterations N.

Microcontroller and Embedded Systems

int checksum v7(int *data, unsigned int N)

int sum=0;

for (; NI=0; N--)
{
sum += *(data++);

}

return sum;

}

This compiles to

checksum_v7
MOV r2,#0
CMP rl,#0

BEQ checksum_v7_end

checksum v7 Toop

LDR r3,[r0],#4

SUBS rl,rl,#1

ADD rZ,r3,r2

BNE checksum_v7 _loop
checksum_v7_end

MOV r0,r2

MOV pc,rld

sum = 0
compare N, 0

; if (N==0) goto end

; r3 = *(data++)

N-- and set flags
sum += r3
if (N1=0) goto loop

r0 = sum
return r0

Notice that the compiler checks that N is nonzero on entry to the function. Often

this check is unnecessary since you know that the array won’t be empty. In this
case a do-while loop gives better performance and code density than a for loop.

Microcontroller and Embedded Systems

LOOP UNROLLING

e On ARM7 or ARMO9 processors the subtract takes one cycle and the branch three cycles,
giving an overhead of four cycles per loop.

e You can save some of these cycles by unrolling a loop—repeating the loop body several
times, and reducing the number of loop iterations by the same proportion.

e [orexample, let’s unroll our packet checksum example four times.

The following code unrolls our packet checksum loop by four times. We assume

that the number of words in the packet N is a multiple of four.

int checksum_v9(int *data, unsigned int N)
{

int sum=0;

do

{
sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);
N -= 4;

} while (N!=0);

return sum;

This compiles to

checksum v9

return r0O

MOV r2,#0 3 sum = O
checksum_v9 loop
LDR r3,[ro0],#4 ; 3 = *(data++)
SUBS rl,rl,#4 3 N -- 4 & set flags
ADD r2,r3,r2 3 sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD rz,r3,r2 ; sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD P2, V3,72 3 sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD o7 A o I o4 3 sum += r3
BNE checksum_v9 loop ; if (N!=0) goto loop
MOV ro,r2 s rO = sum

MOV pc,rld

Microcontroller and Embedded Systems

There are two questions you need to ask when unrolling a loop:
B How many times should I unroll the loop?

B What if the number of loop iterations is not a multiple of the unroll amount? For

example, what if N is not a multiple of four in checksum_v9?

To start with the first question, only unroll loops that are important for the overall performance
of the application. Otherwise unrolling will increase the code size with little performance benefit.

Unrolling may even reduce performance by evicting more important code from the cache.

For the second question, try to arrange it so that array sizes are multiples of your unroll amount.
If this isn’t possible, then you must add extra code to take care of the leftover cases. This

increases the code size a little but keeps the performance high.

This example handles the checksum of any size of data packet using a loop that

has been unrolled four times.

int checksum v10(int *data, unsigned int N)
{

unsigned int i;

int sum=0;

for (i=N/4; i1=0; i--)

{
sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);

}

for (i=N&3; i!=0; i--)

{

sum += *(data++);
}
return sum;

}

Microcontroller and Embedded Systems

SUMMARY: Writing Loops Efficiently

B Use loops that count down to zero. Then the compiler does not need to allocate a

register to hold the termination value, and the comparison with zero is free.

B Use unsigned loop counters by default and the continuation condition i!=0 rather

than i>e. This will ensure that the loop overhead is only two instructions.

m Use do-while loops rather than for loops when you know the loop will iterate at

least once. This saves the compiler checking to see if the loop count is zero.

® Unroll important loops to reduce the loop overhead. Do not overunroll. If the loop
overhead is small as a proportion of the total, then unrolling will increase code

size and hurt the performance of the cache.

B Try to arrange that the number of elements in arrays are multiples of four or

eight. You can then unroll loops easily by two, four, or eight times without worry-

REGISTER ALLOCATION
e The compiler attempts to allocate a processor register to each local variable you use in a
C function.

e [t will try to use the same register for different local variables if the use of the variables
do not overlap.
When there are more local variables than available registers, the compiler stores the
excess variables on the processor stack.

e These variables are called spilled or swapped out variables since they are written out to
memory (in a similar way virtual memory is swapped out to disk).

e Spilled variables are slow to access compared to variables allocated to registers.

Microcontroller and Embedded Systems

To implement a function efficiently, you need to
H minimize the number of spilled variables
H ensure that the most important and frequently accessed variables are stored in

registers

First let’s look at the number of processor registers the ARM C compilers have available for
allocating variables. Below table shows the standard register names and usage when following
the ARM-Thumb procedure call standard (ATPCS), which is used in code generated by C

compilers.

C compiler register usage.

Alternate
Register register
number names ATPCS register usage
r0 al Argument registers. These hold the first four function
rl a2 arguments on a function call and the return value on a
r2 a3 function return. A function may corrupt these registers and
r3 a4 use them as general scratch registers within the function.
r4 vl General variable registers. The function must preserve the callee
rs v2 values of these registers.
ré v3
r7 v4
r8 v5
r9 V6 sb General variable register. The function must preserve the callee

value of this register except when compiling for read-write
position independence (RWPI). Then r9 holds the static base
address. This is the address of the read-write data.

Microcontroller and Embedded Systems

rlo v7 sl General variable register. The function must preserve the callee
value of this register except when compiling with stack limit
checking. Then r10holds the stack limit address.

ril v8 fp General variable register. The function must preserve the callee
value of this register except when compiling using a frame
pointer. Only old versions of armcc use a frame pointer.

ri2 ip A general scratch register that the function can corrupt. It is
useful as a scratch register for function veneers or other
intraprocedure call requirements.

ri3 sp The stack pointer, pointing to the full descending stack.

ri4 Ir The link register. On a function call this holds the return
address.

ris pe The program counter.

e The C compiler can assign 4 variables to registers without spillage.

In practice, some compilers use a fixed register such as rI2 for intermediate scratch
working and do not assign variables to this register.

e Also, complex expressions require intermediate working registers to evaluate. Therefore,
to ensure good assignment to registers, you should try to limit the internal loop of
functions to using at most 12 local variables.

e [the compiler does need to swap out variables, then it chooses which variables to swap
out based on frequency of use.

A variable used inside a loop counts multiple times. You can guide the compiler as to
which variables are important by ensuring these variables are used within the innermost
loop.

e The register keyword in C hints that a compiler should allocate the given variable to
a register.

e However, different compilers treat this keyvword in different ways, and different
architectures have a different number of available registers (for example, Thumb and
ARM).

e Therefore we recommend that you avoid using register and rely on the compiler’s

normal register allocation routine.

Microcontroller and Embedded Systems

FUNCTION CALLS

e The ARM Procedure Call Standard (APCS) defines how to pass function arguments and

return values in ARM registers.

e The more recent ARM-Thumb Procedure Call Standard (ATPCS) covers ARM and

Thumb interworking as well.

e The first four integer arguments are passed in the first four ARM registers: r0, r/, 2, and

r3. Subsequent integer arguments are placed on the full descending stack, ascending in

memory as in figure. Function return integer values are passed in 0.

sp+ 16 | Argument 8
sp+ 12 | Argument 7
sp+8 Argument 6
sp+4 Argument 5
sp Argument 4
r3 Argument 3
r2 Argument 2
rl Argument |
r0 Argument 0 | Return value

ATPCS argument passing.

Microcontroller and Embedded Systems

e This description covers only integer or pointer arguments. 'Two-word arguments such as
long long or double are passed in a pair of consecutive argument registers and
returned in r0. r1.

e The compiler may pass structures in registers or by reference according to command line
compiler options.

e The first point to note about the procedure call standard is the four-register rufe.

e Functions with four or fewer arguments are far more efficient to call than functions with
five or more arguments.

e [or functions with four or fewer arguments, the compiler can pass all the arguments in
registers.

e [or functions with more arguments, both the caller and callee must access the stack for
some arguments.

Note that for C++ the first argument to an object method is the this pointer. This
argument is implicit and additional to the explicit arguments.

e [f your C function needs more than four arguments, or your C++ method more than three
explicit arguments, then it is almost always more efficient to use structures.

e Group related arguments into structures, and pass a structure pointer rather than multiple

arguments. Which arguments are related will depend on the structure of your software.

The next example illustrates the benefits of using a structure pointer. First we show a typical
routine to insert N bytes from array data into a queue. We implement the queue using a cyclic

buffer with start address © start (inclusive) and end address O _end (exclusive).

Microcontroller and Embedded Systems

char *queue bytes vi(

char *Q_start, /* Queue buffer start address */
char *Q_end, /* Queue buffer end address */
char *Q ptr, /* Current queue pointer position */
char *data, /* Data to insert into the queue */
unsigned int N) /* Number of bytes to insert */

{
do

{
*(Q_ptr++) = *(data++);

if (Q _ptr == Q_end)
{
Q _ptr = Q_start;
}
} while (--N);
return Q_ptr;

This compiles to

queue_bytes vl
STR rld4,[r13,#-4]!
LDR rl2,[r13,#4]
queue _v1_loop
LDRB r14,[r3],#1
STRB rl4,[r2],#1
CMP rz,rl
MOVEQ r2,r0
SUBS rl12,r12,#1
BNE queue_vl_loop
MoV ro,r2
LDR pc, [r13],#4

; save Ir on the stack
;ri2 =N

; rl4 = *(data++)
3 *(Q ptr++) = rl4
; if (Q_ptr == Q_end)

{Q_ptr = Q_start;)

3 --N and set flags

; if (N!=0) goto loop
3 r0 = Q ptr

; return r0

Compare this with a more structured approach using three function arguments.

Microcontroller and Embedded Systems

Example
The following code creates a Queue structure and passes this to the function to reduce the

number of function arguments.

typedef struct {

char *Q_start; /* Queue buffer start address */

char *Q_end; /* Queue buffer end address */

char *Q _ptr; /* Current queue pointer position */
} Queue;

void queue_bytes v2(Queue *queue, char *data, unsigned int N)
{

char *Q ptr = queue->Q ptr;

char *Q_end = queue->Q_end;

do

{
*(Q_ptr++) = *(data++);

if (Q_ptr == Q_end)
{
Q_ptr = queue->Q_start;
)
} while (--N);
queue->Q ptr = Q ptr;

This compiles to

queue bytes v2
STR rl4,[ri13,#-4]!
LDR r3,[r0,#8]
LDR r14,[r0,#4]
queue_v2_ loop
LDRB rl2, [r1],#1
STRB riz,[r3],#1
cMp r3,rl4
LDREQ r3,[r0,#0]
SUBS r2,r2,#1
BNE queue _v2 loop
STR r3,[r0,#8]
LDR pc,[ri13],#4

save Ir on the stack
r3 = queue->Q _ptr
r14 = queue->Q_end

r12 = *(data++)
*(Q_ptr++) = ri2
if (Q_ptr == Q_end)

Q _ptr = queue->Q start
--N and set flags
if (N!=0) goto loop
queue->Q ptr = r3
return

Microcontroller and Embedded Systems

The queue bytes v2is one instruction longer than queue bytes v1, butitis in
fact more efficient overall.

The second version has only three function arguments rather than five. Each call to the
function requires only three register setups.

This compares with four register setups, a stack push, and a stack pull for the first
version. There is a net saving of two instructions in function call overhead.

There are likely further savings in the callee function, as it only needs to assign a single
register to the Queue structure pointer, rather than three registers in the nonstructured

casc.

There are other ways of reducing function call overhead if your function is very

small and corrupts few registers (uses few local variables). Put the C function in
the same C file as the functions that will call it. The C compiler then knows the
code generated for the callee function and can make optimizations in the caller

function:

B The caller function need not preserve registers that it can see the callee doesn’t
corrupt. Therefore the caller function need not save all the ATPCS corruptible

registers.

| If the callee function is very small, then the compiler can inline the code in the

caller function. This removes the function call overhead completely.

Example

The function uint to hex converts a 32-bit unsigned integer into an array of eight

hexadecimal digits. It uses a helper function nybble to hex, which converts a digit d in the

range 0 to 15 to a hexadecimal digit.

Microcontroller and Embedded Systems

unsigned int nybble to hex(unsigned int d)

{
if (d<10)
{

return d + '0';

)
return d - 10 + 'A';

}

void uint_to_hex(char *out, unsigned int in)

{

unsigned int i;

for (i=8; il=0; i--)
{
in = (in<<4) | (in>>28); /* rotate in left by 4 bits */
*(out++) = (char)nybble to hex(in & 15);
}
}

When we compile this, we see that uint_to_hex doesn’t call nybble_to_hex at
ll! In the following compiled code, the compiler has inlined the uint_to_hex

>ode. This is more efficient than generating a function call.

uint_to_hex

MOV r3,#8 ; 1 =8
uint_to_hex_loop

MOV rl,rl,ROR #28 ; in = (in<<4)|(in>>28)

AND r2,rl,#0xf ;3 r2=in& 15

CMP r2,#0xa 3 if (r2>=10)

ADDCS r2,r2,#0x37 3 r2 +='A'-10

ADDCC r2,r2,#0x30 ; else r2 +='0'

STRB r2,[r0],#1 3 *(out++) = r2

SUBS r3,r3,#1 ; 1-- and set flags

BNE uint_to hex loop ; if (il=0) goto loop
MOV pc,rld ; return

Microcontroller and Embedded Systems

The compiler will only inline small functions. You can ask the compiler to inline a function using
the inline keyword, although this keyword is only a hint and the compiler may ignore it.
Inlining large functions can lead to big increases in code size without much performance
improvement.

SUMMARY: Calling Functions Efficiently

B Try to restrict functions to four arguments. This will make them more efficient to
call. Use structures to group related arguments and pass structure pointers in-

stead of multiple arguments.

M Define small functions in the same source file and before the functions that call
them. The compiler can then optimize the function call or inline the small

function.

M Critical functions can be inlined using the __inline keyword.

° Two pointers are said to alias when they point to the same address.
° If you write to one pointer, it will affect the value you read from the other pointer. In a

function, the compiler often doesn’t know which pointers can alias and which pointers can’t.
° The compiler must be very pessimistic and assume that any write to a pointer may affect

the value read from any other pointer, which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments two

timer values by a step amount:

void timers vi(int *timerl, int *timer2, int *step)
{

*timerl += *step;

*Limer2 += *step;

Microcontroller and Embedded Systems

This compiles to

timers vl

LDR r3,[r0,#0] ;3 r3 = *timerl
LDR rlz,[r2,#0] 3 r12 = *step
ADD r3,r3,rl2 3 r3 += ril2
STR r3,[r0,#0] ; *timerl = r3
LDR r0,[r1,#0] ;3 M0 = *timer2
LDR r2,[r2,#0] 3 r2 = *step
ADD ro,r0,r2 3 rO += r2

STR ro,[r1,#0] ;3 *timer2 = t0
MOV pc,rlé ;3 return

e Note that the compiler loads from step twice. Usually a compiler optimization called
common subexpression elimination would Kick in so that *step was only evaluated
once, and the value reused for the second occurrence.

e [owever, the compiler can’t use this optimization here. The pointers timerl and step
might alias one another.

e [n other words, the compiler cannot be sure that the write to timer1 doesn’t affect the
read from step.

e In this case the second value of *step is different from the first and has the value

*timerl. This forces the compiler to insert an extra load instruction.

The same problem occurs if you use structure accesses rather than direct
pointer access. The following code also compiles inefficiently:

typedef struct {int step;} State;
typedef struct {int timerl, timer2;) Timers;

void timers vZ(State *state, Timers *timers)
{
timers->timerl += state->step;
timers->timer2 += state->step;

}

The compiler evaluates state->step twice in case state->step and timers-
>timer1 are at the same memory address. The fix is easy: Create a new local vari-

able to hold the value of state->step so the compiler only performs a single load.

Microcontroller and Embedded Systems

Example

In the code for timers_v3 we use a local variable step to hold the value of state-

>step. Now the compiler does not need to worry that state may alias with
timers.

void timers v3(State *state, Timers *timers)

{

int step = state->step;

timers->timerl += step;
timers->timer2 += step;

Consider the following example, which reads and then checksums a data packet:

int checksum next packet(void)
{

int *data;

int N, sum=0;

data = get _next packet (&N);

do
{

sum += *(data++);
} while (--N);

return sum;

i

Here get next packet is a function returning the address and size of the next data

packet. The previous code compiles to

Microcontroller and Embedded Systems

checksum next packet

STMFD rl13!,{r4,r14) ; save rd4, Ir on the stack
SUB ri3,ri13,#8 ; create two stacked variables
ADD rO,rl13,#4 ; O = &N, N stacked
MOV rd,#0 ; sum = 0
BL get _next_packet ; r0 = data

checksum_loop
LDR rl,[r0],#4 ; rl = *(data++)
ADD rd,rl,rd ; sum += rl
LDR rl,[r13,#4] ; rl = N (read from stack)
SUBS ri,rl,#1 ; rl-- & set flags
STR rl,[rl13,#4)] ; N = rl (write to stack)
BNE checksum_loop ; if (N!=0) goto loop
MOV ro,r4 ; r0 = sum
ADD ri3,rl3,#8 ; delete stacked variables
LDMFD rl13!,{rd,pc) 3 return ro

SUMMARY: Avoiding Pointer Aliasing

B Do not rely on the compiler to eliminate common subexpressions involving mem-
ory accesses. Instead create new local variables to hold the expression. This en-

sures the expression is evaluated only once.

B Avoid taking the address of local variables. The variable may be inefficient to ac-

cess from then on.

Microcontroller and Embedded systems 21CSs43

STRUCTURE ARRANGEMENT
v The way you lay out a frequently used structure can have a significant impact on its

performance and code density.

v There are two issues concerning structures on the ARM: alignment of the structure
entries and the overall size of the structure.

v For architectures up to and including ARMV5TE, load and store instructions are only
guaranteed to load and store values with address aligned to the size of the access width.

Table 5.4 summarizes these restrictions.

Table 5.4

Load and store alignment restrictions for ARMvVSTE.

Transfersize Instruction Byte address

1 byte LDRB, LDRSB, STRB any byte address alignment
2 bytes LDRH, LDRSH, STRH multiple of 2 bytes

4 bytes LDR, STR multiple of 4 bytes

8 bytes LDRD, STRD multiple of 8 bytes

Microcontroller and Embedded systems 21Cs43

For example, consider the structure

struct {
char a;
int b;
char c;
short d;
}

For a little-endian memory system the compiler will lay this out adding padding
to ensure that the next object is aligned to the size of that object:

Address +3 19 +1 40
+0 pad pad pad a
+4 | b[31,24] | b[23,16] | b[15,8] | b[7,0]
48 | d[15,8] d[7,0] pad o

To improve the memory usage, you should reorder the elements

struct {
char a;
char c;
short d;
int b;

}

This reduces the structure size from 12 bytes to 8 bytes, with the following new

layout:

Address +3 +2 +1 +0
40 | d[15,8] d[7,0] c a
+4 | b[31,24] | b[23,16] | b[15,8] | b[7,0]

Microcontroller and Embedded systems 21Cs43

Therefore, it is a good idea to group structure elements of the same size, so that
the structure layout doesn’t contain unnecessary padding. The armcc compiler
does include a keyword _ packed that removes all padding. For example, the

structure

__packed struct {

char a;

int b;

char c;
short d;

}
will be laid out in memory as

Address +3 +2 +1 40
+0 | b[23,16] | b[15,8] | b[7,0] a

+4 | d[15,8] | d[7,0] C b[31,24]

v However, packed structures are slow and inefficient to access. The compiler emulates
unaligned load and store operations by using several aligned accesses with data
operations to merge the results.

v Only use the__packed keyword where space is far more important than speed and you
can’t reduce padding by rearragement. Also use it for porting code that assumes a certain
structure layout in memory.

v The exact layout of a structure in memory may depend on the compiler vendor and
compiler version you use.

v In API (Application Programmer Interface) definitions it is often a good idea to insert any
padding that you cannot get rid of into the structure manually.

v This way the structure layout is not ambiguous. It is easier to link code between compiler

versions and compiler vendors if you stick to unambiguous structures.

Microcontroller and Embedded systems 21Cs43

Another point of ambiguity is enum. Different compilers use different sizes for
an enumerated type, depending on the range of the enumeration. For example,
consider the type

typedef enum {
FALSE,
TRUE

} Bool;

v The armcc in ADS1.1 will treat Bool as a one-byte type as it only uses the values 0 and 1.
Bool will only take up 8 bits of space in a structure.

» However, gcc will treat Bool as a word and take up 32 bits of space in a structure. To
avoid ambiguity it is best to avoid using enum types in structures used in the API to your
code.

» Another consideration is the size of the structure and the offsets of elements within the
structure. This problem is most acute when you are compiling for the Thumb instruction
set.

v Thumb instructions are only 16 bits wide and so only allow for small element offsets
from a structure base pointer.

» Table 5.5 shows the load and store base register offsets available in Thumb.

Table 5.5

Thumb load and store offsets.

Instructions Offset available from the base register

LDRB, LDRSB, STRB 0 to 31 bytes

LDRH, LDRSH, STRH 0 to 31 halfwords (0 to 62 bytes)

LDR, STR 0 to 31 words (0 to 124 bytes)

Microcontroller and Embedded systems 21Cs43

Therefore the compiler can only access an 8-bit structure element with a single instruction if it
appears within the first 32 bytes of the structure. Similarly, single instructions can only access
16-bit values in the first 64 bytes and 32-bit values in the first 128 bytes. Once you exceed these

limits, structure accesses become inefficient.

The following rules generate a structure with the elements packed for maxi-
mum efficiency:

m Place all 8-hit elements at the start of the structure.
m Place all 16-bit elements next, then 32-hit, then 64-bit.
m Place all arrays and larger elements at the end of the structure.

m If the structure is too big for a single instruction to access all the elements, then
group the elements into substructures. The compiler can maintain pointers to the
individual substructures.

Microcontroller and Embedded systems 21CSs43

PORTABILITY ISSUES
Here is a summary of the issues you may encounter when porting C code to the ARM.

The char type. On the ARM, char is unsigned rather than signed as for many other
processors. A common problem concerns loops that use a char loop counter i and the
continuation condition i > 0, they become infinite loops. In this situation, armcc produces

a warning of unsigned comparison with zero. You should either use a compiler option to
make char signed or change loop counters to type int.

The int type. Some older architectures use a 16-bit int, which may cause problems when
moving to ARM’s 32-bit int type although this is rare nowadays. Note that expressions
are promoted to an int type before evaluation. Therefore if i =-0x1000, the expression i
== 0xFO0O00 is true on a 16-bit machine but false on a 32- bit machine.

Unaligned data pointers. Some processors support the loading of short and int typed
values from unaligned addresses. A C program may manipulate pointers directly so that
they become unaligned, for example, by casting a char * to an int *. ARM architectures
up to ARMV5TE do not support unaligned pointers. To detect them, run the program on
an ARM with an alignment checking trap. For example, you can configure the ARM720T
to data abort on an unaligned access.

Endian assumptions. C code may make assumptions about the endianness of a memory
system, for example, by casting a char * to an int *. If you configure the ARM for the
same endianness the code is expecting, then there is no issue. Otherwise, you must
remove endian-dependent code sequences and replace them by endian-independent ones.
Function prototyping. The armcc compiler passes arguments narrow, that is, reduced to
the range of the argument type. If functions are not prototyped correctly, then the function
may return the wrong answer. Other compilers that pass arguments wide may give the
correct answer even if the function prototype is incorrect. Always use ANSI prototypes.
Use of bit-fields. The layout of bits within a bit-field is implementation and endian
dependent. If C code assumes that bits are laid out in a certain order, then the code is not
portable.

Use of enumerations. Although enum is portable, different compilers allocate different
numbers of bytes to an enum. The gcc compiler will always allocate four bytes to an

enum type. The armcc compiler will only allocate one byte if the enum takes only eight-

Microcontroller and Embedded systems 21CSs43

bit values. Therefore you can’t cross-link code and libraries between different compilers if
you use enums in an API structure.

v Inline assembly. Using inline assembly in C code reduces portability between
architectures. You should separate any inline assembly into small inlined functions that
can easily be replaced.

v The volatile keyword. Use the volatile keyword on the type definitions of ARM
memory-mapped peripheral locations. This keyword prevents the compiler from
optimizing away the memory access. It also ensures that the compiler generates a data
access of the correct type. For example, if you define a memory location as a volatile
short type, then the compiler will access it using 16-bit load and store instructions
LDRSH and STRH.

CHAPTER

EXCEPTION AND
INTERRUPT
HANDLING

At the heart of an embedded system lie the exception handlers. They are responsible for
handling errors, interrupts, and other events generated by the external system. Efficient
handlers can dramatically improve system performance. The process of determining a
good handling method can be complicated, challenging, and fun.

In this chapter we will cover the theory and practice of handling exceptions, and specif-
ically the handling of interrupts on the ARM processor. The ARM processor has seven
exceptions that can halt the normal sequential execution of instructions: Data Abort,
Fast Interrupt Request, Interrupt Request, Prefetch Abort, Software Interrupt, Reset, and
Undefined Instruction.

This chapter is divided into three main sections:

m Exception handling. Exception handling covers the specific details of how the ARM
processor handles exceptions.

m [nterrupts. ARM defines an interrupt as a special type of exception. This section discusses
the use of interrupt requests, as well as introducing some of the common terms, features,
and mechanisms surrounding interrupt handling.

m [nterrupt handling schemes. The final section provides a set of interrupt handling
methods. Included with each method is an example implementation.

317

318 Chapter 9 Exception and Interrupt Handling

91 EXCEPTION HANDLING

An exception is any condition that needs to halt the normal sequential execution of instruc-
tions. Examples are when the ARM core is reset, when an instruction fetch or memory access
fails, when an undefined instruction is encountered, when a software interrupt instruction
is executed, or when an external interrupt has been raised. Exception handling is the method
of processing these exceptions.

Most exceptions have an associated software exception handler—a software routine that
executes when an exception occurs. For instance, a Data Abort exception will have a Data
Abort handler. The handler first determines the cause of the exception and then services
the exception. Servicing takes place either within the handler or by branching to a specific
service routine. The Reset exception is a special case since it is used to initialize an embedded
system.

This section covers the following exception handling topics:

m ARM processor mode and exceptions
m Vector table
m Exception priorities

m Link register offsets

9.1.1 ARM PROCESSOR EXCEPTIONS AND MODES

Table 9.1 lists the ARM processor exceptions. Each exception causes the core to enter a

specific mode. In addition, any of the ARM processor modes can be entered manually by

changing the cpsr. User and systern mode are the only two modes that are not entered by a

corresponding exception, in other words, to enter these modes you must modify the cpsr.
When an exception causes a mode change, the core automatically

m saves the cpsr to the spsr of the exception mode

m saves the pcto the Ir of the exception mode

Table 9.1 ARM processor exceptions and associated modes.

Exception Mode Main purpose

Fast Interrupt Request FIQ fast interrupt request handling

Interrupt Request IRQ interrupt request handling

SWI and Reset SvC protected mode for operating systems

Prefetch Abort and Data Abort abort virtual memory and/or memory protection handling

Undefined Instruction undefined software emulation of hardware coprocessors

9.1 Exception Handling 319

FIQ
CrQ]

SWI

Undefined

- i v v v v A
XCePUONS | (Undefined) (__1RQ_) (__F1IQ_)(_Abort)(__svc)

Modes

Figure 9.1 Exceptions and associated modes.

m sets the ¢psrto the exception mode

B sets pcto the address of the exception handler

Figure 9.1 shows a simplified view of exceptions and associated modes. Note that when
an exception occurs the ARM processor always switches to ARM state.

9.1.2 VECTOR TABLE

Chapter 2 introduced the vector table—a table of addresses that the ARM core branches to
when an exception is raised. These addresses commonly contain branch instructions of one
of the following forms:

m B <address>—This branch instruction provides a branch relative from the pc.

m LDR pc, [pc, #offset]—Thisload registerinstructionloads the handler address from
memory to the pc. The address is an absolute 32-bit value stored close to the vector
table. Loading this absolute literal value results in a slight delay in branching to a specific
handler due to the extra memory access. However, you can branch to any address in
memory.

m LDR pc, [pc, #-0xffO]—This load register instruction loads a specific interrupt ser-
vice routine address from address Oxfffff030 to the pc. This specific instruction is
only used when a vector interrupt controller is present (VIC PL190).

320 Chapter 9 Exception and Interrupt Handling

Table 9.2

EXAMPLE

9.1

Figure 9.2

Vector table and processor modes.

Exception Mode Vector table offset

Reset SVC +0x00
Undefined Instruction UND +0x04
Software Interrupt (SWI) SVC +0x08

Prefetch Abort ABT +0x0c
Data Abort ABT +0x10
Not assigned — +0x14
IRQ IRQ +0x18
FIQ FIQ +0xlc

m MOV pc, #immediate—This move instruction copies an immediate value into the pc.
It lets you span the full address space but at limited alignment. The address must be an
8-bit immediate rotated right by an even number of bits.

You can also have other types of instructions in the vector table. For example, the FIQ
handler might start at address offset +0x1c. Thus, the FIQ handler can start immediately
at the FIQ vector location, since it is at the end of the vector table. The branch instructions
cause the pc to jump to a specific location that can handle the specific exception.

Table 9.2 shows the exception, mode, and vector table offset for each exception.

Figure 9.2 shows a typical vector table. The Undefined Instruction entry is a branch instruc-
tion to jump to the undefined handler. The other vectors use an indirect address jump with
the LDR load to pcinstruction.

Notice that the FIQ handler also uses the LDR load to pc instruction and does not take
advantage of the fact that the handler can be placed at the FIQ vector entry location.

0x00000000: 0xe59ffa38 RESET: > 1dr pc, [pc, #reset]
0x00000004: 0xea000502 UNDEF: b undInstr
0x00000008: 0xe59ffa38 SWI : 1dr pc, [pc, #swi]
0x0000000c: 0xe59ffa38 PABT : 1dr pc, [pc, #prefetch]
0x00000010: 0xe59ffa38 DABT : 1dr pc, [pc, #data]

0x00000014: 0xe59ffa38 - : 1dr pc, [pc, #notassigned]
0x00000018: 0xe59ffa38 IRQ : 1ldr pc, [pc, #irql
0x0000001c: Oxe59ffa38 FIQ : 1ldr pc, [pc, #fiq]

Example vector table.

9.1 Exception Handling 321

9.1.3 EXCEPTION PRIORITIES

Table 9.3

Exceptions can occur simultaneously, so the processor has to adopt a priority mechanism.
Table 9.3 shows the various exceptions that occur on the ARM processor and their associ-
ated priority level. For instance, the Reset exception is the highest priority and occurs when
power is applied to the processor. Thus, when a reset occurs, it takes precedence over all
other exceptions. Similarly, when a Data Abort occurs, it takes precedence over all other
exceptions apart from a Reset exception. The lowest priority level is shared by two excep-
tions, the Software Interrupt and Undefined Instruction exceptions. Certain exceptions
also disable interrupts by setting the I or F bits in the cpsr, as shown in Table 9.3.

Each exception is dealt with according to the priority level set out in Table 9.3. The
following is a summary of the exceptions and how they should be handled, starting with
the highest.

The Reset exception is the highest priority exception and is always taken whenever it is
signaled. The reset handler initializes the system, including setting up memory and caches.
External interrupt sources should be initialized before enabling IRQ or FIQ interrupts to
avoid the possibility of spurious interrupts occurring before the appropriate handler has
been set up. The reset handler must also set up the stack pointers for all processor modes.

During the first few instructions of the handler, it is assumed that no exceptions or
interrupts will occur. The code should be designed to avoid SWIs, undefined instructions,
and memory accesses that may abort, that is, the handler is carefully implemented to avoid
further triggering of an exception.

Data Abort exceptions occur when the memory controller or MMU indicates that an
invalid memory address has been accessed (for example, if there is no physical memory
for an address) or when the current code attempts to read or write to memory without the
correct access permissions. An FIQ exception can be raised within a Data Abort handler
since FIQ exceptions are not disabled. When the FIQ is completely serviced, control is
returned back to the Data Abort handler.

A Fast Interrupt Request (FIQ) exception occurs when an external peripheral sets the
FIQ pin to nFIQ. An FIQ exception is the highest priority interrupt. The core disables

Exception priority levels.

Exceptions Priority Ibit Fbit
Reset 1 1 1
Data Abort 2 1 —
Fast Interrupt Request 3 1 1
Interrupt Request 4 1 —
Prefetch Abort 5 1 —
Software Interrupt 6 1 —
Undefined Instruction 6 1 —

322 Chapter 9 Exception and Interrupt Handling

both IRQ and FIQ exceptions on entry into the FIQ handler. Thus, no external source can
interrupt the processor unless the IRQ and/or FIQ exceptions are reenabled by software. It
is desirable that the FIQ handler (and also the abort, SWI, and IRQ handlers) is carefully
designed to service the exception efficiently.

An Interrupt Request (IRQ) exception occurs when an external peripheral sets the IRQ
pin to nIRQ. An IRQ exception is the second-highest priority interrupt. The IRQ handler
will be entered if neither an FIQ exception nor Data Abort exception occurs. On entry to
the IRQ handler, the IRQ exceptions are disabled and should remain disabled until the
current interrupt source has been cleared.

A Prefetch Abort exception occurs when an attempt to fetch an instruction results
in a memory fault. This exception is raised when the instruction is in the execute stage
of the pipeline and if none of the higher exceptions have been raised. On entry to the
handler, IRQ exceptions will be disabled, but the FIQ exceptions will remain unchanged.
If FIQ is enabled and an FIQ exception occurs, it can be taken while servicing the Prefetch
Abort.

A Software Interrupt (SWI) exception occurs when the SWI instruction is executed and
none of the other higher-priority exceptions have been flagged. On entry to the handler,
the cpsrwill be set to supervisor mode.

If the system uses nested SWI calls, the link register r14 and spsr must be stored away
before branching to the nested SWI to avoid possible corruption of the link register and
the spsr.

An Undefined Instruction exception occurs when an instruction not in the ARM or
Thumb instruction set reaches the execute stage of the pipeline and none of the other
exceptions have been flagged. The ARM processor “asks” the coprocessors if they can
handle this as a coprocessor instruction. Since coprocessors follow the pipeline, instruction
identification can take place in the execute stage of the core. If none of the coprocessors
claims the instruction, an Undefined Instruction exception is raised.

Both the SWI instruction and Undefined Instruction have the same level of priority,
since they cannot occur at the same time (in other words, the instruction being executed
cannot both be an SWI instruction and an undefined instruction).

9.14 LINK REGISTER OFFSETS

When an exception occurs, the link register is set to a specific address based on the current
pe. For instance, when an IRQ exception is raised, the link register /v points to the last
executed instruction plus 8. Care has to be taken to make sure the exception handler does
not corrupt Ir because Ir is used to return from an exception handler. The IRQ exception
is taken only after the current instruction is executed, so the return address has to point to
the next instruction, or Ir — 4. Table 9.4 provides a list of useful addresses for the different
exceptions.

The next three examples show different methods of returning from an IRQ or FIQ
exception handler.

9.1 Exception Handling 323

Table 9.4 Useful link-register-based addresses.

Exception Address Use
Reset — Ir is not defined on a Reset
Data Abort Ir—38 points to the instruction that caused the Data Abort exception
FIQ Ir—4 return address from the FIQ handler
IRQ Ir—4 return address from the IRQ handler
Prefetch Abort Ir—4 points to the instruction that caused the Prefetch Abort exception
SWI Ir points to the next instruction after the SWI instruction
Undefined Instruction Ir points to the next instruction after the undefined instruction
ExamMPLE This example shows that a typical method of returning from an IRQ and FIQ handler is to
9.2 use a SUBS instruction:
handler
<handler code>
SUBS pc, rl4, #4 s pc=rl4-4
Because there is an S at the end of the SUB instruction and the pcis the destination register,
the cpsris automatically restored from the spsr register.
ExaMPLE This example shows another method that subtracts the offset from the link register r14 at
9.3 the beginning of the handler.
handler
SUB rl4, rla, #4 . rla-=1
<handler code>
MOVS pc, rla ; return
After servicing is complete, return to normal execution occurs by moving the link register
r14 into the pc and restoring cpsr from the spsr.
ExamPLE The final example uses the interrupt stack to store the link register. This method first
9.4 subtracts an offset from the link register and then stores it onto the interrupt stack.

handler
SUB rl4, rl4, #4 3 rl4-=4

324 Chapter 9 Exception and Interrupt Handling

STMFD r13!,{r0-r3, rl4} ; store context
<handler code>
LDMFD r13!,{r0-r3, pc}” ; return

To return to normal execution, the LDM instruction is used to load the pc. The * symbol in
the instruction forces the cpsrto be restored from the spsr.

9.2 INTERRUPTS

There are two types of interrupts available on the ARM processor. The first type of interrupt
causes an exception raised by an external peripheral—namely, IRQ and FIQ. The second
type is a specific instruction that causes an exception—the SWI instruction. Both types
suspend the normal flow of a program.

In this section we will focus mainly on IRQ and FIQ interrupts. We will cover these
topics:

®m Assigning interrupts
m Interrupt latency
m [RQ and FIQ exceptions

m Basic interrupt stack design and implementation

9.2.1 ASSIGNING INTERRUPTS

A system designer can decide which hardware peripheral can produce which interrupt
request. This decision can be implemented in hardware or software (or both) and depends
upon the embedded system being used.

An interrupt controller connects multiple external interrupts to one of the two ARM
interrupt requests. Sophisticated controllers can be programmed to allow an external
interrupt source to cause either an IRQ or FIQ exception.

When it comes to assigning interrupts, system designers have adopted a standard design
practice:

m Software Interrupts are normally reserved to call privileged operating system routines.
For example, an SWI instruction can be used to change a program running in user mode
to a privileged mode. For an SWI handler example, take a look at Chapter 11.

m Interrupt Requests are normally assigned for general-purpose interrupts. For example,
a periodic timer interrupt to force a context switch tends to be an IRQ exception. The
IRQ exception has a lower priority and higher interrupt latency (to be discussed in the
next section) than the FIQ exception.

9.2 Interrupts 325

m Fast Interrupt Requests are normally reserved for a single interrupt source that requires
a fast response time—for example, direct memory access specifically used to move
blocks of memory. Thus, in an embedded operating system design, the FIQ exception
is used for a specific application, leaving the IRQ exception for more general operating
system activities.

9.2.2 INTERRUPT LATENCY

Interrupt-driven embedded systems have to fight a battle with interrupt latency—the inter-
val of time from an external interrupt request signal being raised to the first fetch of an
instruction of a specific interrupt service routine (ISR).

Interrupt latency depends on a combination of hardware and software. System architects
must balance the system design to handle multiple simultaneous interrupt sources and
minimize interrupt latency. If the interrupts are not handled in a timely manner, then the
system will exhibit slow response times.

Software handlers have two main methods to minimize interrupt latency. The first
method is to use a nested interrupt handler, which allows further interrupts to occur
even when currently servicing an existing interrupt (see Figure 9.3). This is achieved by
reenabling the interrupts as soon as the interrupt source has been serviced (so it won’t
generate more interrupts) but before the interrupt handling is complete. Once a nested
interrupt has been serviced, then control is relinquished to the original interrupt service
routine.

- - - Interrupt handler

Normal execution Interrupt enabled

Interrupt (1)

,Interrupt (2)

Interrupt (3)

Return !

Return

Return

Figure 9.3 A three-level nested interrupt.

326 Chapter 9 Exception and Interrupt Handling

The second method involves prioritization. You program the interrupt controller to
ignore interrupts of the same or lower priority than the interrupt you are handling, so only
a higher-priority task can interrupt your handler. You then reenable interrupts.

The processor spends time in the lower-priority interrupts until a higher-priority inter-
rupt occurs. Therefore higher-priority interrupts have a lower average interrupt latency
than the lower-priority interrupts, which reduces latency by speeding up the completion
time on the critical time-sensitive interrupts.

9.2.3 IRQ AND FIQ EXCEPTIONS

EXAMPLE

9.5

IRQ and FIQ exceptions only occur when a specific interrupt mask is cleared in the cpsr. The
ARM processor will continue executing the current instruction in the execution stage of the
pipeline before handling the interrupt—an important factor in designing a deterministic
interrupt handler since some instructions require more cycles to complete the execution
stage.

An IRQ or FIQ exception causes the processor hardware to go through a standard
procedure (provided the interrupts are not masked):

1. The processor changes to a specific interrupt request mode, which reflects the interrupt
being raised.

2. The previous mode’s cpsr is saved into the spsr of the new interrupt request mode.
3. The pcis saved in the Ir of the new interrupt request mode.

4. Interrupt/s are disabled—either the IRQ or both IRQ and FIQ exceptions are disabled
in the ¢psr. This immediately stops another interrupt request of the same type being
raised.

5. The processor branches to a specific entry in the vector table.

The procedure varies slightly depending upon the type of interrupt being raised. We will
illustrate both interrupts with an example. The first example shows what happens when
an IRQ exception is raised, and the second example shows what happens when an FIQ
exception is raised.

Figure 9.4 shows what happens when an IRQ exception is raised when the processor is in
user mode. The processor starts in state 1. In this example both the IRQ and FIQ exception
bits in the ¢psrare enabled.

When an IRQ occurs the processor moves into state 2. This transition automatically
sets the IRQ bit to one, disabling any further IRQ exceptions. The FIQ exception, however,
remains enabled because FIQ has a higher priority and therefore does not get disabled when
a low-priority IRQ exception is raised. The cpsr processor mode changes to IRQ mode. The
user mode cpsr is automatically copied into spsr_irq.

9.2 Interrupts 327

IR
L nzcvqjift_usr Q

2.{ nzcvgjIft_irq
Return to spsr_irg=cpsr
user mode rl4 irqg=pc
code pc=0x18

3. Software
handler

Figure 9.4 Interrupt Request (IRQ).

Register r14_irq is assigned the value of the pc when the interrupt was raised. The pcis
then set to the IRQ entry +0x18 in the vector table.

In state 3 the software handler takes over and calls the appropriate interrupt service
routine to service the source of the interrupt. Upon completion, the processor mode reverts
back to the original user mode code in state 1.

ExamPLE Figure 9.5 shows an example of an FIQ exception. The processor goes through a similar
9.6 procedure as with the IRQ exception, but instead of just masking further IRQ exceptions
from occurring, the processor also masks out further FIQ exceptions. This means that both

interrupts are disabled when entering the software handler in state 3.

FI
L. nzcvqjift usr Q

nzcvgjIFt fiq

Return to spsr_fig=cpsr
user mode r14 fig=pc
code pc=0x1c

3. | Software
handler

Figure 9.5 Fast Interrupt Request (FIQ).

328 Chapter 9 Exception and Interrupt Handling

Table 9.5

Table 9.6

Changing to FIQ mode means there is no requirement to save registers r§ to r12 since
these registers are banked in FIQ mode. These registers can be used to hold temporary
data, such as buffer pointers or counters. This makes FIQ ideal for servicing a single-source,
high-priority, low-latency interrupt.

9.2.3.1 Enabling and Disabling FIQ and IRQ Exceptions

The ARM processor core has a simple procedure to manually enable and disable interrupts
that involves modifying the cpsr when the processor is in a privileged mode.

Table 9.5 shows how IRQ and FIQ interrupts are enabled. The procedure uses three
ARM instructions.

The first instruction MRS copies the contents of the cpsr into register r1. The second
instruction clears the IRQ or FIQ mask bit. The third instruction then copies the updated
contents in register 71 back into the cpsr, enabling the interrupt request. The postfix _ciden-
tifies that the bit field being updated is the control field bit [7:0] of the ¢psr. (For more details
see Chapter 2.) Table 9.6 shows a similar procedure to disable or mask an interrupt request.

It is important to understand that the interrupt request is either enabled or disabled
only once the MSR instruction has completed the execution stage of the pipeline. Interrupts
can still be raised or masked prior to the MSR completing this stage.

Enabling an interrupt.

cpsrvalue IRQ FIQ
Pre nzcvqjIFt_SVC nzcvqjlFt_SVC
Code enable_irqg enable_fig
MRS rl, cpsr MRS rl, cpsr
BIC rl, r1, #0x80 BIC rl, r1, #0x40
MSR cpsr c, rl MSR cpsr c, rl
Post nzevgjiFt_SVC nzevgjIft_SVC

Disabling an interrupt.

cpst IRQ FIQ

Pre nzevqjift_SVC nzevqjift_SVC

Code disable irg disable fiq
MRS rl, cpsr MRS rl, cpsr
ORR rl, rl, #0x80 ORR rl, rl, #0x40
MSR cpsr_c, rl MSR cpsr_c, rl

Post nzcvgjlft SVC nzevqjiFt_SVC

9.2 Interrupts 329

To enable and disable both the IRQ and FIQ exceptions requires a slight modification to
the second instruction. The immediate value on the data processing BIC or ORR instruction
has to be changed to 0xc0 to enable or disable both interrupts.

9.2.4 BASIC INTERRUPT STACK DESIGN AND IMPLEMENTATION

Exceptions handlers make extensive use of stacks, with each mode having a dedicated
register containing the stack pointer. The design of the exception stacks depends upon
these factors:

m Operating system requirements—Each operating system has its own requirements for
stack design.

m Target hardware—The target hardware provides a physical limit to the size and
positioning of the stack in memory.

Two design decisions need to be made for the stacks:

m The location determines where in the memory map the stack begins. Most ARM-based
systems are designed with a stack that descends downwards, with the top of the stack
at a high memory address.

m Stack size depends upon the type of handler, nested or nonnested. A nested interrupt
handler requires more memory space since the stack will grow with the number of
nested interrupts.

A good stack design tries to avoid stack overflow—where the stack extends beyond
the allocated memory—because it causes instability in embedded systems. There are soft-
ware techniques that identify overflow and that allow corrective measures to take place to
repair the stack before irreparable memory corruption occurs. The two main methods are
(1) to use memory protection and (2) to call a stack check function at the start of each
routine.

The IRQ mode stack has to be set up before interrupts are enabled—normally in the
initialization code for the system. It is important that the maximum size of the stack is
known in a simple embedded system, since the stack size is reserved in the initial stages of
boot-up by the firmware.

Figure 9.6 shows two typical memory layouts in a linear address space. The first layout,
A, shows a traditional stack layout with the interrupt stack stored underneath the code
segment. The second layout, B, shows the interrupt stack at the top of the memory above
the user stack. The main advantage of layout B over A is that B does not corrupt the vector
table when a stack overflow occurs, and so the system has a chance to correct itself when an
overflow has been identified.

330 Chapter 9 Exception and Interrupt Handling

Figure 9.6

EXAMPLE

9.7

A User stack l B
User stack
Heap T
Heap T
Code
Code
0x00008000
0x00000000 Vector table 0x00000000 Vector table
Typical memory layouts.

For each processor mode a stack has to be set up. This is carried out every time the processor
is reset. Figure 9.7 shows an implementation using layout A. To help set up the memory
layout, a set of defines are declared that map the memory region names with an absolute
address.

For instance, the User stack is given the label USR_Stack and is set to address 0x20000.
The Supervisor stack is set to an address that is 128 bytes below the IRQ stack.

USR_Stack EQU 0x20000
IRQ_Stack EQU 0x8000
SVC_Stack EQU IRQ Stack-128

To help change to the different processor modes, we declare a set of defines that map
each processor mode with a particular mode bit pattern. These labels can then be used to
set the ¢psr to a new mode.

Usr32md EQU 0x10 ; User mode

F1Q32md EQU Ox11 ; FIQ mode

IRQ32md EQU 0x12 ; IRQ mode

SvVC32md EQU 0x13 s Supervisor mode

Abt32md EQU 0x17 ; Abort mode

Und32md EQU Ox1b ; Undefined instruction mode
Sys32md EQU Ox1f 3 System mode

Figure 9.7

9.2 Interrupts 331

0x20000

Unused
0x10000

Static data
0x8000 + code size

Code
0x8000
0x8000 — 128
0x8000 — 640

Free space
0x20

Vector table
0x00

Example implementation using layout A.

For safety reasons a define is declared to disable both the IRQ and FIQ exceptions in the
cpsr:

NoInt EQU 0xc0 3 Disable interrupts

NoInt masks both interrupts by setting the masks to one.

Initialization code starts by setting up the stack registers for each processor mode. The
stack register r13 is one of the registers that is always banked when a mode change occurs.
The code first initializes the IRQ stack. For safety reasons, it is always best to make sure that
interrupts are disabled by using a bitwise OR between NoInt and the new mode.

332 Chapter 9 Exception and Interrupt Handling

Each mode stack must be set up. Here is an example of how to set up three different
stacks when the processor core comes out of reset. Note that, since this is a basic example,
we do not implement a stack for the abort, FIQ, and undefined instruction modes. If these
stacks are required, then very similar code is used.

m Supervisor mode stack—The processor core starts in supervisor mode so the SVC stack
setup involves loading register r13_svc with the address pointed to by SVC_NewStack.
For this example the value is SVC_Stack.

LDR r13, SVC_NewStack ; rl3_svc

SVC_NewStack
DCD SVC_Stack

®m JRQ mode stack—To set up the IRQ stack, the processor mode has to change to IRQ
mode. This is achieved by storing a cpsr bit pattern into register r2. Register r2 is then
copied into the cpsr, placing the processor into IRQ mode. This action immediately
makes register r13_irq viewable, and it can then be assigned the IRQ_Stack value.

MoV r2, #NoInt|IRQ32md
MSR cpsr_c, r2
LDR r13, IRQ NewStack ; r13_irqg

IRQ_NewStack
DCD IRQ Stack

m User mode stack—It is common for the user mode stack to be the last to be set up because
when the processor is in user mode there is no direct method to modify the cpsr. An
alternative is to force the processor into systern mode to set up the user mode stack since
both modes share the same registers.

MOV r2, #Sys32md
MSR cpsr_c, r2
LDR r13, USR_NewStack ; r13_usr

USR_NewStack
DCD USR Stack

Using separate stacks for each mode rather than processing using a single stack has one
main advantage: errant tasks can be debugged and isolated from the rest of the system.

9.3 Interrupt Handling Schemes 333

9.3 INTERRUPT HANDLING SCHEMES

In this final section we will introduce a number of different interrupt handling schemes,
ranging from the simple nonnested interrupt handler to the more complex grouped prior-
itized interrupt handler. Each scheme is presented as a reference with a general description
plus an example implementation.

The schemes covered are the following:

® A nonnested interrupt handler handles and services individual interrupts sequentially. It
is the simplest interrupt handler.

® A nested interrupt handler handles multiple interrupts without a priority assignment.
® A reentrant interrupt handler handles multiple interrupts that can be prioritized.
m A prioritized simple interrupt handler handles prioritized interrupts.

B A prioritized standard interrupt handler handles higher-priority interrupts in a shorter
time than lower-priority interrupts.

B A prioritized direct interrupt handler handles higher-priority interrupts in a shorter time
and goes directly to a specific service routine.

® A prioritized grouped interrupt handler is a mechanism for handling interrupts that are
grouped into different priority levels.

®m A VIC PL190 based interrupt service routine shows how the vector interrupt controller
(VIC) changes the design of an interrupt service routine.

9.3.1 NONNESTED INTERRUPT HANDLER

The simplest interrupt handler is a handler that is nonnested: the interrupts are disabled
until control is returned back to the interrupted task or process. Because a nonnested
interrupt handler can only service a single interrupt at a time, handlers of this form are
not suitable for complex embedded systems that service multiple interrupts with differing
priority levels.

Figure 9.8 shows the various stages that occur when an interrupt is raised in a system
that has implemented a simple nonnested interrupt handler:

1. Disable interrupt/s—When the IRQ exception is raised, the ARM processor will disable
further IRQ exceptions from occurring. The processor mode is set to the appropri-
ate interrupt request mode, and the previous cpsr is copied into the newly available
spsr_{interrupt request mode}. The processor will then set the pc to point to the correct
entry in the vector table and execute the instruction. This instruction will alter the pcto
point to the specific interrupt handler.

2. Save context—On entry the handler code saves a subset of the current processor mode
nonbanked registers.

334 Chapter 9 Exception and Interrupt Handling

Interrupt

1. [Disable interrupts,
pc = vector table entry
spsr_{mode} = cpsr,

2
3. | Interrupt
handler
4. | Service
interrupt
Return to routine
task
-— 5.| Restore

context

6. [Enable interrupts
pc=1r—4 [——
cpst = spsr_{mode}

Figure 9.8 Simple nonnested interrupt handler.

3. Interrupt handler—The handler then identifies the external interrupt source and
executes the appropriate interrupt service routine (ISR).

4. Interrupt service routine—The ISR services the external interrupt source and resets the
interrupt.

5. Restore context—The ISR returns back to the interrupt handler, which restores the
context.

6. Enable interrupts—Finally, to return from the interrupt handler, the spsr_{interrupt
request mode} is restored back into the cpsr. The pc is then set to the next instruction
after the interrupt was raised.

ExAMPLE This IRQ handler example assumes that the IRQ stack has been correctly set up by the
9.8 initialization code.

9.3 Interrupt Handling Schemes 335

interrupt_handler

SuB rld,rld #4 ; adjust Ir
STMFD r13!,{r0-r3,rl12,rl14} ; save context
<interrupt service routine>

LDMFD r13!,{r0-r3,r12,pc}" 5 return

The first instruction sets the link register r14_irg to return back to the correct location
in the interrupted task or process. As described in Section 9.1.4, due to the pipeline, on
entry to an IRQ handler the link register points four bytes beyond the return address, so the
handler must subtract four from the link register to account for this discrepancy. The link
register is stored on the stack. To return to the interrupted task, the link register contents
are restored from the stack and moved into the pc.

Notice registers r0 to 3 and register 712 are also preserved because of the ATPCS. This
allows an ATPCS-compliant subroutine to be called within the handler.

The STMFD instruction saves the context by placing a subset of the registers onto the
stack. To reduce interrupt latency we save a minimum number of registers because the
time taken to execute an STMFD or LDMFD instruction is proportional to the number of
registers being transferred. The registers are saved to the stack pointed to by the register
r13_{interrupt request mode].

If you are using a high-level language within your system it is important to understand
the compiler’s procedure calling convention because it will influence both the registers saved
and the order they are saved onto the stack. For instance, the ARM compilers preserves
registers r4 to r11 within a subroutine call so there is no need to preserve them unless they
will be used by the interrupt handler. If no C routines are called, it may not be necessary
to save all of the registers. It is safe to call a C function only when the registers have been
saved onto the interrupt stack.

Within a nonnested interrupt handler, it is not necessary to save the spsr because it will
not be destroyed by any subsequent interrupt.

At the end of the handler the LDMFD instruction will restore the context and return from
the interrupt handler. The " at the end of the LDMFD instruction means that the cpsr will be
restored from the spsr, which is only valid if the pc is loaded at the same time. If the pcis
not loaded, then " will restore the user bank registers.

In this handler all processing is handled within the interrupt handler, which returns
directly to the application.

Once the interrupt handler has been entered and the context has been saved, the handler
must determine the interrupt source. The following code shows a simple example of how
to determine the interrupt source. IRQStatus is the address of the interrupt status register.
If the interrupt source is not determined, then control can pass to another handler. In
this example we pass control to the debug monitor. Alternatively we could just ignore the
interrupt.

interrupt_handler
SuB rld,rl4,#4 ; rla-=4

336 Chapter 9 Exception and Interrupt Handling

SUMMARY

STMFD sp!,{r0-r3,ri2,ri14} ; save context

LDR r0,=IRQStatus 5 interrupt status addr
LDR r0, [r0] ; get interrupt status
TST r0,#0x0080 ; if counter timer

BNE timer_isr ;s then branch to ISR
TST r0,#0x0001 ; else if button press
BNE button_isr ; then call button ISR
LDMFD sp!,{r0-r3,rl2,r14} ; restore context

LDR pc,=debug_monitor ; else debug monitor

In the preceding code there are two ISRs: timer isr and button isr. They are
mapped to specific bits in the IRQStatus register, 0x0080 and 0x0001, respectively.

Simple Nonnested Interrupt Handler

®m Handles and services individual interrupts sequentially.

m High interrupt latency; cannot handle further interrupts occurring while an interrupt
is being serviced.

m Advantages: relatively easy to implement and debug.

®m Disadvantage: cannot be used to handle complex embedded systems with multiple
priority interrupts.

9.3.2 NESTED INTERRUPT HANDLER

A nested interrupt handler allows for another interrupt to occur within the currently called
handler. This is achieved by reenabling the interrupts before the handler has fully serviced
the current interrupt.

For a real-time system this feature increases the complexity of the system but also
improves its performance. The additional complexity introduces the possibility of subtle
timing issues that can cause a system failure, and these subtle problems can be extremely
difficult to resolve. A nested interrupt method is designed carefully so as to avoid these
types of problems. This is achieved by protecting the context restoration from interruption,
so that the next interrupt will not fill the stack (cause stack overflow) or corrupt any of the
registers.

The first goal of any nested interrupt handler is to respond to interrupts quickly so the
handler neither waits for asynchronous exceptions, nor forces them to wait for the handler.
The second goal is that execution of regular synchronous code is not delayed while servicing
the various interrupts.

The increase in complexity means that the designers have to balance efficiency with
safety, by using a defensive coding style that assumes problems will occur. The handler has
to check the stack and protect against register corruption where possible.

9.3 Interrupt Handling Schemes 337

Interrupt

; - Enter interrupt handler
Disable interrupt

Save context

Return to task ~ Complete Not complete

Service
interrupt

4. | Restore context |

5‘| Prepare stack |

l

6~| Switch to mode |

l

7. | Start constructing

a frame
8~| Enable interrupt l
Finish Interrupt
frame
construction

Return to task 10. | Complete
servicing
[Restore context

Interrupt

the interrupt

Figure 9.9 Nested interrupt handler.

Figure 9.9 shows a nested interrupt handler. As can been seen from the diagram, the han-
dler is quite a bit more complicated than the simple nonnested interrupt handler described
in Section 9.3.1.

The nested interrupt handler entry code is identical to the simple nonnested interrupt
handler, except that on exit, the handler tests a flag that is updated by the ISR. The flag
indicates whether further processing is required. If further processing is not required, then
the interrupt service routine is complete and the handler can exit. If further processing is

338 Chapter 9 Exception and Interrupt Handling

EXAMPLE

9.9

required, the handler may take several actions: reenabling interrupts and/or performing a
context switch.

Reenabling interrupts involves switching out of JRQ mode to either SVC or system
mode. Interrupts cannot simply be reenabled when in IRQ mode because this would
lead to possible link register r14 _irq corruption, especially if an interrupt occurred after
the execution of a BL instruction. This problem will be discussed in more detail in
Section 9.3.3.

Performing a context switch involves flattening (emptying) the IRQ stack because the
handler does not perform a context switch while there is data on the IRQ stack. All registers
saved on the IRQ stack must be transferred to the task’s stack, typically on the SVC stack.
The remaining registers must then be saved on the task stack. They are transferred to a
reserved block of memory on the stack called a stack frame.

This nested interrupt handler example is based on the flow diagram in Figure 9.9. The rest
of this section will walk through the handler and describe in detail the various stages.

Maskmd EQU Ox1f ; processor mode mask

SVC32md EQU 0x13 ; SVC mode

I Bit EQU 0x80 ; IRQ bit

FRAME_RO EQU 0x00

FRAME_R1 EQU FRAME_RO+4

FRAME_R2 EQU FRAME_R1+4

FRAME_R3 EQU FRAME_R2+4

FRAME_R4 EQU FRAME_R3+4

FRAME_R5 EQU FRAME_R4+4

FRAME_R6 EQU FRAME_R5+4

FRAME_R7 EQU FRAME_R6+4

FRAME_R8 EQU FRAME_R7+4

FRAME_R9 EQU FRAME_R8+4

FRAME_R10 EQU FRAME_R9+4

FRAME_R11 EQU FRAME R10+4

FRAME_R12 EQU FRAME R11+4

FRAME_PSR EQU FRAME R12+4

FRAME_LR EQU FRAME PSR+4

FRAME_PC EQU FRAME_ LR+4

FRAME_SIZE EQU FRAME_PC+4

IRQ_Entry ; instruction state : comment
SuB rld,rld, #4 3 2
STMDB r13!,{r0-r3,r12,r14} ; 2 : save context

<service interrupt>
BL read_RescheduleFlag ; 3 : more processing

CmpP
LDMNEIA
MRS
MoV
ADD
MRS
BIC
ORR
MSR
SuB
STMIA
LDMIA
BIC
MSR
STMDB
STR
STR
STR
STR

LDMIA
MSR
LDMIA

r0,#0

r13!,{r0-r3,r12,pc}"

r2,spsr

r0,r13
ri3,rl13,#6*4
rl,cpsr
rl,rl,#Maskmd
rl,rl,#SVC32md
cpsr_c,rl

r13,r13,#FRAME_SIZE-FRAME R4

r13,{r4-r11}
r0, {r4-r9}
rl,rl,#I Bit
cpsr_c,rl
r13!,{r4-r7}

r2,[r13,#FRAME_PSR]
r8,[r13,#FRAME_R12]

r9, [rl13,#FRAME_PC]
r14,[r13,#FRAME_LR]
<complete interrupt service routine>
r13!,{r0-r12,r14}

spsr_cxsf,rl4
r13!,{rl4,pc}”

11 :
11 :
11 :

O W W W OWOoONNNooohoyoy ool ol W

9.3 Interrupt Handling Schemes

: if processing?

else return

1 copy spsr_irq
: copy rl3 irq
¢ reset stack

1 copy cpsr

: change to SVC
: make space

: save r4-rll

: restore r4-r9

: enable IRA

: save r4-r7 SVC
: save PSR

: save rl2

1 save pc

: save Ir

restore context
restore spsr
return

339

This example uses a stack frame structure. All registers are saved onto the frame except
for the stack register r13. The order of the registers is unimportant except that FRAME_LR
and FRAME_PC should be the last two registers in the frame because we will return with a

single instruction:

LDMIA r13!, {rl4, pc}”

There may be other registers that are required to be saved onto the stack frame,
depending upon the operating system or application being used. For example:

® Registers r13_usr and r14_usr are saved when there is a requirement by the operating

system to support both user and SVC modes.

m Floating-point registers are saved when the system uses hardware floating point.

There are a number of defines declared in this example. These defines map various
cpsr/spsr changes to a particular label (for example, the I Bit).

A set of defines is also declared that maps the various frame register references with
frame pointer offsets. This is useful when the interrupts are reenabled and registers have to
be stored into the stack frame. In this example we store the stack frame on the SVC stack.

340 Chapter 9 Exception and Interrupt Handling

The entry point for this example handler uses the same code as for the simple
nonnested interrupt handler. The link register r14 is first modified so that it points to
the correct return address, and then the context plus the link register r14 are saved onto
the IRQ stack.

An interrupt service routine then services the interrupt. When servicing is complete or
partially complete, control is passed back to the handler. The handler then calls a function
called read_RescheduleFlag, which determines whether further processing is required.
It returns a nonzero value in register r0 if no further processing is required; otherwise it
returns a zero. Note we have not included the source for read RescheduleFlag because
it is implementation specific.

The return flag in register r0is then tested. If the register is not equal to zero, the handler
restores context and returns control back to the suspended task.

Register r0is set to zero, indicating that further processing is required. The first operation
is to save the spsr, so a copy of the spsr_irq is moved into register 2. The spsr can then be
stored in the stack frame by the handler later on in the code.

The IRQ stack address pointed to by register r13_irg is copied into register r0 for later
use. The next step is to flatten (empty) the IRQ stack. This is done by adding 6 * 4 bytes to
the top of the stack because the stack grows downwards and an ADD instruction can be used
to set the stack.

The handler does not need to worry about the data on the IRQ stack being corrupted
by another nested interrupt because interrupts are still disabled and the handler will not
reenable the interrupts until the data on the IRQ stack has been recovered.

The handler then switches to SVC mode; interrupts are still disabled. The cpsris copied
into register r1 and modified to set the processor mode to SVC. Register r1 is then written
back into the cpsr, and the current mode changes to SVC mode. A copy of the new cpsris
left in register r1I for later use.

The next stage is to create a stack frame by extending the stack by the stack frame size.
Registers r4 to r11 can be saved onto the stack frame, which will free up enough registers to
allow us to recover the remaining registers from the IRQ stack still pointed to by register r0.

At this stage the stack frame will contain the information shown in Table 9.7. The only
registers that are not in the frame are the registers that are stored upon entry to the IRQ
handler.

Table 9.8 shows the registers in SVC mode that correspond to the existing IRQ registers.
The handler can now retrieve all the data from the IRQ stack, and it is safe to reenable
interrupts.

IRQ exceptions are reenabled, and the handler has saved all the important registers. The
handler can now complete the stack frame. Table 9.9 shows a completed stack frame that
can be used either for a context switch or to handle a nested interrupt.

At this stage the remainder of the interrupt servicing may be handled. A context switch
may be performed by saving the current value of register r13 in the current task’s control
block and loading a new value for register r13 from the new task’s control block.

Itis now possible to return to the interrupted task/handler, or to another task if a context
switch occurred.

9.3 Interrupt Handling Schemes 341

Table 9.7 SVC stack frame.

Label Offset Register
FRAME RO 40 —
FRAME R1 +4 —
FRAME R2 48 —

FRAME R3 +12 —
FRAME R4 +16 14
FRAME R5 420 15
FRAME R6 +24 16
FRAME R7 ~ +28 17
FRAME R8 +32 18
FRAME RO +36 19
FRAME R10 440 rI0
FRAME R11 444 rlI
FRAME R12 +48 —
FRAME PSR +52 —
FRAME_LR +56 —
FRAME_PC +60 —

Table 9.8 Data retrieved from the IRQ stack.

Registers (SVC) Retrieved IRQ registers

r4 r0

r5 rl

r6 r2

r7 r3

r8 rl2

r9 r14 (return address)

suMMARY Nested Interrupt Handler

® Handles multiple interrupts without a priority assignment.
B Medium to high interrupt latency.

®m Advantage—can enable interrupts before the servicing of an individual interrupt is
complete reducing interrupt latency.

®m Disadvantage—does not handle prioritization of interrupts, so lower priority interrupts
can block higher priority interrupts.

342 Chapter 9 Exception and Interrupt Handling

Table 9.9 Complete frame stack.

Label Offset Register

FRAME RO 40 10
FRAME R1 +4 rl
FRAME R2 +8 2
FRAME R3 412 r3
FRAME R4 +16 r4
FRAME R5 420 r5
FRAME R6 424 r6
FRAME R7 428 r7
FRAME R8 432 r8
FRAME R9 436 r9
FRAME R10 440 r10
FRAME R11 444 ril
FRAME R12 +48 rl2
FRAME PSR 452 spsr_irq
FRAME LR +56 rl4
FRAME_PC +60 rl4_irq

9.3.3 REENTRANT INTERRUPT HANDLER

A reentrant interrupt handler is a method of handling multiple interrupts where interrupts
are filtered by priority, which is important if there is a requirement that interrupts with
higher priority have a lower latency. This type of filtering cannot be achieved using the
conventional nested interrupt handler.

The basic difference between a reentrant interrupt handler and a nested interrupt han-
dler is that the interrupts are reenabled early on in the reentrant interrupt handler, which
can reduce interrupt latency. There are a number of issues relating to reenabling interrupts
early, which will be described in more detail later on in this section.

Allinterrupts in a reentrant interrupt handler must be serviced in SVC, system, undefined
instruction, or abort mode on the ARM processor.

Ifinterrupts are reenabled in an interrupt mode and the interrupt routine performs a BL
subroutine call instruction, the subroutine return address will be set in the register r14_irq.
This address would be subsequently destroyed by an interrupt, which would overwrite the
return address into register r14_irg. To avoid this, the interrupt routine should swap into
SVCor systemmode. The BL instruction can then use register r14_svcto store the subroutine
return address. The interrupts must be disabled at the source by setting a bit in the interrupt
controller before reenabling interrupts via the cpsr.

If interrupts are reenabled in the cpsr before processing is complete and the interrupt
source is not disabled, an interrupt will be immediately regenerated, leading to an infinite
interrupt sequence or race condition. Most interrupt controllers have an interrupt mask

9.3 Interrupt Handling Schemes 343

Interrupt

TS Enter interrupt handler
1.[D

isable interrupt

2. | Save partial context |

l

3-| Change mode |

!

4. | Reserve stack space
and save complete
context

5. [Clear external interrupt]

|

Enable interrupt

Service

Return to task interrupt

-—

— Servicing complete
8. | Restore context £ P 9 {Enable external interrupt)

Servicing incomplete

Resave context

10.

Return to task
-

12. | Restore context

interrupt,

Figure9.10 Reentrant interrupt handler.

register that allows you to mask out one or more interrupts, but the remaining interrupts
are still enabled.

The interrupt stack is unused since interrupts are serviced in SVC mode (for example,
on the task’s stack). Instead the IRQ stack register r13is used to point to a 12-byte structure
that will be used to store some registers temporarily on interrupt entry.

344 Chapter 9 Exception and Interrupt Handling

EXAMPLE

9.10

It is paramount to prioritize interrupts in a reentrant interrupt handler. If the interrupts
are not prioritized, the system latency degrades to that of a nested interrupt handler because
lower-priority interrupts will be able to preempt the servicing of a higher-priority interrupt.
This in turn leads to the locking out of higher-priority interrupts for the duration of the
servicing of a lower-priority interrupt.

It is assumed that register 13_irq has been set up to point to a 12-byte data structure and
does not point to a standard IRQ stack. Offsets such as IRQ_SPSR are used to point into the
data structure. As with all interrupt handlers, there are some standard definitions that are
required to modify the cpsrand spsr registers.

IRQ RO EQU O

IRQ_spsr EQU 4

IRQ_R14 EQU 8

Maskmd EQU Ox1f ; mask mode
SVC32md EQU 0x13 5 SVC mode
I Bit EQU 0x80 s IRQ bit
ic_Base EQU 0x80000000

IRQStatus EQU 0x0

IRQRawStatus EQU 0x4

IRQEnable EQU 0x8

IRQEnableSet EQU 0x8
IRQEnableClear EQU Oxc

IRQ_Entry ; instruction state : comment
SUB rl4, rl4, #4 3 2 1 rld irq-=4
STR rl4, [rl13, #IRQ R14] ; 2 @ save rld irg
MRS rl4, spsr s 2 : Ccopy spsr
STR r14, [r13, #IRQ spsr] 3 2 : save spsr
STR r0, [r13, #IRQ_RO] ; 2 : save r0
MOV r0, r13 3 2 @ copy rl3_ irqg
MRS rl4, cpsr 5 3 : copy cpsr
BIC rl4, rl4, #Maskmd 5 3
ORR rl4, r14, #SVC32md 5 3¢
MSR cpsr_c, rl4 ; 3 : enter SVC mode
STR rl4, [r13, #-8]! s 4 : save rl4
LDR r14, [r0, #IRQ R14] 3 4 ¢ rld sve=rld irq
STR rl4, [r13, #4] ; 4 ¢ save rl4 irg
LDR rl4, [r0, #IRQ spsr] ; 4 ¢ rl4_svc=spsr_irq
LDR r0, [r0, #IRQ RO] 5 4 : restore r0
STMDB r13!, {r0-r3,r8,r12,r14} ; 4 : save context

LDR

LDR

STR

MRS

BIC

MSR

BL

LDR

STR

BL

CmpP
LDMNEIA
MSRNE
LDMNEIA
LDMIA
STMDB
BL
LDMIA
MSR
LDMIA

rl4, =ic_Base
r8, [rl4, #IRQStatus]

r8, [rl14, #IRQEnableClear] ;

rl4, cpsr

rl4, rl4, #I Bit
cpsr_c, rl4
process_interrupt

rl4, =ic_Base

r8, [rl4, #IRQEableSet]
read_RescheduleFTlag

r0, #0

r13!, {r0-r3,r8,r12,r14}
spsr_cxsf, rl4

r13!, {rl4, pc}”

r13!, {r0-r3, r8}

r13!, {r0-rll}
continue_servicing
r13!, {r0-r12, rl14}
spsr_cxsf, rl4

r13!, {rl4, pc}”

9.3 Interrupt Handling Schemes

0O 00 0000 W WW N o o1 ol Ol

: int crtl address
: get int status

: clear interrupts
: rl4_svc=cpsr

: clear I-Bit

: enable IRQ int

: call ISR

¢ int ctrl address
: enable ints

: more processing
: if processing

: then Toad context

update spsr
return

: else Toad reg

save context

: continue service
: restore context
: update spsr

: return

345

The start of the handler includes a normal interrupt entry point, with four being
subtracted from the register r14_irq.
It is now important to assign values to the various fields in the data structure pointed to
by register r13_irq. The registers that are recorded are r14_irq, spsr_irg, and r0. The register
10 is used to transfer a pointer to the data structure when swapping to SVC mode since
register 0 will not be banked. This is why register r13_irg cannot be used for this purpose:
it is not visible from SVC mode.
The pointer to the data structure is saved by copying register r13_irq into r0.

Offset (from r13_irq) Value

+0 70 (on entry)
+4 spsr_irq

+8 r14_irq

The handler will now set the processor into SVC mode using the standard procedure
of manipulating the cpsr. The link register r14 for SVC mode is saved on the SVC stack.
Subtracting 8 provides room on the stack for two 32-bit words.

Register r14_irq is then recovered and stored on the SVC stack. Now both the link
registers r14 for IRQ and SVC are stored on the SVC stack.

The rest of the IRQ context is recovered from the data structure passed into the SVC
mode. Register r14_svc will now contain the spsr for IRQ mode.

346 Chapter 9 Exception and Interrupt Handling

SUMMARY

Registers are then saved onto the SVC stack. Register r8 is used to hold the interrupt
mask for the interrupts that have been disabled in the interrupt handler. They will be
reenabled later.

The interrupt source(s) are then disabled. An embedded system would at this point
prioritize the interrupts and disable all interrupts lower than the current priority to prevent
a low-priority interrupt from locking out a high-priority interrupt. Interrupt prioritizing
will be discussed later on in this chapter.

Since the interrupt source has been cleared, it is now safe to reenable IRQ exceptions.
This is achieved by clearing the i bit in the cpsr. Note that the interrupt controller still has
external interrupts disabled.

It is now possible to process the interrupt. The interrupt processing should not attempt
to do a context switch because the external source interrupt is disabled. If during the
interrupt processing a context switch is needed, it should set a flag that could be picked up
later by the interrupt handler. It is now safe to reenable external interrupts.

The handler needs to check if further processing is required. If the returned value is
nonzero in register 10, then no further processing is required. If zero, the handler restores
the context and then returns control back to the suspended task.

A stack frame now has to be created so that the service routine can complete. This is
achieved by restoring parts of the context and then storing the complete context back on to
the SVC stack.

The subroutine continue servicing, which will complete the servicing of the
interrupt, is called. This routine is not provided because it is specific to an implementation.

After the interrupt routine has been serviced, control can be given back to the suspended
task.

Reentrant Interrupt Handler

® Handles multiple interrupts that can be prioritized.
= Low interrupt latency.
®m Advantage: handles interrupts with differing priorities.

m Disadvantage: tends to be more complex.

9.3.4 PRIORITIZED SIMPLE INTERRUPT HANDLER

Both the nonnested interrupt handler and the nested interrupt handler service interrupts
on a first-come-first-served basis. In comparison, the prioritized interrupt handler will
associate a priority level with a particular interrupt source. The prioritylevel is used to dictate
the order that the interrupts will be serviced. Thus, a higher-priority interrupt will take
precedence over a lower-priority interrupt, which is a particularly desirable characteristic
in many embedded systems.

EXAMPLE

9.11

9.3 Interrupt Handling Schemes 347

Methods of handling prioritization can either be achieved in hardware or software. For
hardware prioritization, the handler is simpler to design since the interrupt controller will
provide the current highest-priority interrupt that requires servicing. These systems require
more initialization code at startup since the interrupts and associated priority level tables
have to be constructed before the system can be switched on; software prioritization, on
the other hand, requires the additional assistance of an external interrupt controller. This
interrupt controller has to provide a minimal set of functions that include being able to set
and un-setmasks, and to read the interrupt status and source.

The rest of this section will cover a software prioritization technique chosen because it
is a general method and does not rely on a specialized interrupt controller. To help describe
the priority interrupt handler, we will introduce a fictional interrupt controller based upon
a standard interrupt controller from ARM. The controller takes multiple interrupt sources
and generates an IRQ and/or FIQ signal depending upon whether a particular interrupt
source is enabled or disabled.

Figure 9.11 shows a flow diagram of a simple priority interrupt handler, based on a
reentrant interrupt handler.

The interrupt controller has a register (IRQRawStatus) that holds the raw interrupt status—
the state of the interrupt signals prior to being masked by the controller. The IRQEnable
register determines which interrupts are masked from the processor. This register can only
be set or cleared using IRQEnableSet and IRQEnableClear. Table 9.10 shows the interrupt
controller register names, offsets from the controller’s base address, read/write operations,
and a description of the registers.

I Bit EQU 0x80

PRIORITY_O EQU 2 ; Comms Rx
PRIORITY 1 EQU 1 3 Comms Tx
PRIORITY_ 2 EQU 0 3 Timer 1

PRIORITY 3 EQU 3 5 Timer 2

BINARY_0 EQU 1<<PRIORITY_O ; 1<<2 0x00000004
BINARY 1 EQU 1<<PRIORITY_ 1 ; 1<<1 0x00000002
BINARY_2 EQU 1<<PRIORITY_ 2 ; 1<<0 0x00000001
BINARY 3 EQU 1<<PRIORITY 3 ; 1<<3 0x00000008
MASK 3 EQU BINARY 3

MASK 2 EQU MASK 3+BINARY 2

MASK 1 EQU MASK_2+BINARY_1

MASK 0 EQU MASK_1+BINARY 0

ic_Base EQU 0x80000000

IRQStatus EQU 0x0

348

Figure9.11

Chapter 9 Exception and Interrupt Handling

Interrupt

L. { Disable interrupts

Return to task
-~

2. | Save minimum context

8.

9. | Restore context |<—

!

Get external interrupt
status

l

Identify interrupt
priority and mask off
lower-priority
interrupts and enable
IRQs

l

Jump to service
routine

Service
interrupt

Switch on internal
interrupts followed
by external interrupt

IRQRawStatus
IRQEnable
IRQEnableSet
IRQEnableClear

Priority interrupt handler.

EQU 0x4
EQU 0x8
EQU 0x8
EQU Oxc

Table 9.10

Interrupt controller registers.

9.3 Interrupt Handling Schemes

349

Register Offset R/W Description

IRQRawStatus +0x04 r represents status of the interrupt sources

IRQEnable +0x08 r masks the interrupt sources that generate IRQ/FIQ to the CPU
IRQStatus +0x00 r represents interrupt sources after masking

IRQEnableSet +0x08 w sets bits in the interrupt enable register

IRQEnabTeClear +0x0c w clears bits in the interrupt enable register

IRQ_Handler
SuB
STMFD
MRS
STMFD
LDR
MoV
LDR
TST
MOVNE
TST
MOVNE
TST
MOVNE
TST
MOVNE
LDR
ADR
LDR
AND
STR
MRS
BIC
MSR
LDR
NOP
DCD
DCD
DCD
DCD

priority masks
DCD

; instruction

rl4, rl4, #4 ;
r13!, {rl14} ;
rl4, spsr H
r13!, {r10,r11,r12,rl14} ;
rl4, =ic_Base H
r11, #PRIORITY 3 ;
r10, [r14, #IRQStatus] ;
r10, #BINARY 3 ;
r11, #PRIORITY 3 H
r10, #BINARY_ 2 5
r11, #PRIORITY 2 ;
r10, #BINARY_1 5
r11, #PRIORITY 1 ;
r10, #BINARY_0 H
r11l, #PRIORITY_ O ;
r12, [rl4,#IRQEnable] ;
r10, priority masks 5
r10, [r10,r11,LSL #2] H
rl2, r12,r10 H
r12, [r14,#IRQEnableClear] ;
rl4, cpsr H
rl4, rl4, #I Bit ;
cpsr_c, rl4 H
pc, [pc, rll, LSL#2] ;
service_timerl H
service_commtx ;
service_commrx H
service_timer2 ;
MASK 2 ;

state : comment

2 :rl4 irq -= 4

: save rld irq

1 copy spsr_irqg

: save context
:int crtl addr

: default priority
: load IRQ status
: if Timer 2

then P3(10)
:if Timer 1

then P2

: if Comm Tx

then P1

: if Comm Rx

then PO(hi)

: IRQEnable reg

: mask address

: priority value
: AND enable reg
: disable ints

: copy cpsr

: clear I-bit

: enable IRQ ints
: jump to an ISR

o P PP EPEREEEEEEMAEAEPRPWWWNDNDDN

timerl ISR
commtx ISR
commrx ISR
timer2 ISR

priority mask 2

350 Chapter 9 Exception and Interrupt Handling

DCD MASK 1
DCD MASK 0
DCD MASK 3

service_timerl
STMFD r13!, {r0-r9}
<service routine>
LDMFD r13!, {r0-rl0}
MRS rll, cpsr

ORR rll, rll, #I Bit

MSR cpsr_c, rll
LDR rll, =ic_Base

STR r12, [r11, #IRQEnableSet]
LOMFD r13!, {rll, rl12, rl4}

MSR spsr_cxsf, rl4
LDMFD r13!, {pc}”

Most interrupt controllers also have a corresponding set of registers for the FIQ excep-
tions and even allow individual interrupt sources to be attached to a particular interrupt
signal going to the core. Thus, by programming the controller, a particular interrupt source
can be made to cause either an IRQ or FIQ exception.

The registers are offset from a base address in memory. Table 9.10 shows all the offsets
for the various registers from interrupt controller base address ic_Base. Note that offset
0x08 is used for both IRQEnable and IRQEnableSet.

In the interrupt controller each bit is associated with a particular interrupt source
(see Figure 9.12). For example, bit 2 is associated with a receive interrupt source for serial

O O W 00 0o 0o

3 priority mask 1
5 priority mask 0
; priority mask 3

: save context

: restore context
: copy cpsr

: set I-bit

: disable IRQ

: int ctrl addr

: enable ints

: restore context
: set spsr

: return

communication.
Binary 8 4) u
2 rx tx tl
31 . .. 3 2 1 0
Bit position
tl—timer 1
t2—timer 2
tx—serial transmit
rx—serial receive

Figure9.12 32-bit interrupt control register.

9.3 Interrupt Handling Schemes 351

The PRIORITY x defines the four interrupt sources, used in the example, to a cor-
responding set of priority levels, where PRIORITY_0 is the highest-priority interrupt and
PRIORITY_3is the lowest-priority interrupt.

The BINARY x defines provide the bit patterns for each of the priority levels. For instance,
for a PRIORITY 0 interrupt the binary pattern would be 0x00000004 (or 1 « 2). For each
priority level there is a corresponding mask that masks out all interrupts that are equal or
lower in priority. For instance, MASK_2 will mask out interrupts from Timer2 (priority = 3)
and CommRx (priority = 2).

The defines for the interrupt controller registers are also listed. ic_Base is the base
address, and the remaining defines (for instance, IRQStatus) are all offsets from that base
address.

The priority interrupt handler starts with a standard entry, but at first only the IRQ link
register is stored onto the IRQ stack.

Next the handler obtains the spsrand places the contents into register r14_irq and frees
up a group of registers for use in processing the prioritization.

The handler needs to obtain the status of the interrupt controller. This is achieved by
loading in the base address of the interrupt controller into register r14 and loading register
rl10with ic_Base (register r14) offset by IRQStatus (0x00).

The handler now needs to determine the highest-priority interrupt by testing the status
information. If a particular interrupt source matches a priority level, then the priority level
is set in register r11. The method compares the interrupt source with all the set priority
levels, starting first with the lowest priority and working to the highest priority.

After this code fragment, register r14_irq will contain the base address of the interrupt
controller, and register r11 will contain the bit number of the highest-priority interrupt. It is
now important to disable the lower- and equal-priority interrupts so that the higher-priority
interrupts can still interrupt the handler.

Notice that this method is more deterministic since the time taken to discover the
priority is always the same.

To set the interrupt mask in the controller, the handler must determine the current
IRQ enable register and also obtain the start address of the priority mask table. The
priority masks are defined at the end of the handler.

Register r12 will now contain the current IRQ enable register, and register r10 will
contain the start address of the priority table. To obtain the correct mask, register r11 is
shifted left by two (using the barrel shifter LSL #2). This will multiply the address by four
and add that to the start address of the priority table.

Register r10 contains the new mask. The next step is to clear the lower-priority interrupts
using the mask, by performing a binary AND with the mask and register r12 (IRQEnable
register) and then clearing the bits by storing the new mask into IRQEnableClear register.
It is now safe to enable IRQ exceptions by clearing the 7 bit in the cpsr.

Lastly the handler needs to jump to the correct service routine, by modifying register r11
(which still contains the highest-priority interrupt) and the pc. Shifting register r11 left by
two (multiplying by four) and adding it to the pc allows the handler to jump to the correct
routine by loading the address of the service routine directly into the pc.

352 Chapter 9 Exception and Interrupt Handling

SUMMARY

The jump table has to follow the instruction that loads the pc. There is an NOP in between
the jump table and the instruction that manipulates the pcbecause the pcwill be pointing two
instructions ahead (or eight bytes). The priority mask table is in interrupt source bit order.

Each ISR follows the same entry style. The example given is for the timerl interrupt
service routine.

The ISR is then inserted after the header above. Once the ISR is complete, the interrupt
sources must be reset and control passed back to the interrupted task.

The handler must disable the IRQs before the interrupts can be switched back on. The
external interrupts can now be restored to their original value, which is possible because
the service routine did not modify register r12 and so it still contains the original value.

To return back to the interrupted task, context is restored and the original spsris copied
back into the spsr_irq.

Prioritized Simple Interrupt Handler

m Handles prioritized interrupts.
®m Low interrupt latency.

m Advantage: deterministic interrupt latency since the priority level is identified first and
then the service is called after the lower-priority interrupts are masked.

m Disadvantage: the time taken to get to a low-priority service routine is the same as for
a high-priority routine.

9.3.5 PRIORITIZED STANDARD INTERRUPT HANDLER

EXAMPLE

9.12

Following on from the prioritized simple interrupt handler, the next handler adds an addi-
tional level of complexity. The prioritized simple interrupt handler tested all the interrupts
to establish the highest priority—an inefficient method of establishing the priority level but
it does have the advantage of being deterministic since each interrupt priority will take the
same length of time to be identified.

An alternative approach is to jump early when the highest-priority interrupt has been
identified (see Figure 9.13), by setting the pc and jumping immediately once the priority
level has been established. This means that the identification section of the code for the
prioritized standard interrupt handler is more involved than for the prioritized simple
interrupt handler. The identification section will determine the priority level and jump
immediately to a routine that will handle the masking of the lower-priority interrupts and
then jump again via a jump table to the appropriate ISR.

A prioritized standard interrupt handler starts the same as a prioritized simple interrupt
handler but intercepts the interrupts with a higher-priority earlier. Register r14 is assigned
to point to the base of the interrupt controller and load register r10 with the interrupt
controller status register. To allow the handler to be relocatable, the current address pointed
to by the pcis recorded into register r11.

9.3 Interrupt Handling Schemes

353

Return to task
—

9. | Restore context

Obtain external
interrupt status

Is a priority 1
interrupt?

-’ NG
’/I iority 2~
< Isapriority2 "
~_interrupt? .~
7
N -,

e

N
No7

\
|

Disable lower-
priority interrupts

Enable external
interrupts

Enable internal
interrupts

Service
interrupt

Figure 9.13 Part of a prioritized standard interrupt handler.

354 Chapter 9 Exception and Interrupt Handling

I Bit

PRIORITY_O
PRIORITY 1
PRIORITY 2
PRIORITY 3

BINARY 0
BINARY 1
BINARY 2
BINARY 3

MASK_3
MASK_2
MASK_1
MASK_0

ic_Base
IRQStatus
IRQRawStatus
IRQEnable
IRQEnableSet
IRQEnableClear

IRQ_Handler
SuB
STMFD
MRS
STMFD
LDR
LDR
MOV
TST
BLNE
TST
BLNE
TST
BLNE
TST
BLNE

disable_Tower
SuB
LDR

EQU 0x80

EQU
EQU
EQU
EQU

w O = N

EQU 1<<PRIORITY_O
EQU 1<<PRIORITY_1
EQU 1<<PRIORITY 2
EQU 1<<PRIORITY_3

EQU BINARY 3

EQU MASK 3+BINARY 2
EQU MASK_2+BINARY 1
EQU MASK_1+BINARY 0

EQU 0x80000000
EQU 0x0
EQU Ox4
EQU 0x8
EQU 0x8
EQU 0xc

; instruction

rl4, rl4, #4

r13!, {rl4}

rl4, spsr
r13!,{r10,r11,r12,r14}
rl4, =ic_Base

r10, [r14, #IRQStatus]
rll, pc

r10, #BINARY_O
disable_lower

r10, #BINARY 1
disable_lower

r10, #BINARY 2
disable_Tower

r10, #BINARY_ 3
disable_lower

rll, rl4, rll
r12,=priority_table

B
B
B

s
s
s

s

Comms Rx

state :

(8]

Ol o1 OO OO OT O RW W NN

; Comms Tx
3 Timer 1
; Timer 2

1<<2 0x00000004

; 1<<1 0x00000002

1<<0 0x00000001

; 1<<3 0x00000008

comment

:rld irq -= 4
: save rl4_irq
1 copy spsr_irqg
: save context
: int crtl addr
: Toad IRQ status
: copy pc

: if CommRx
then branch
. if CommTx
then branch
: if Timerl
then branch
: if Timer2
then branch

: rll=rld-copy of pc
: priority table

9.3 Interrupt Handling Schemes 355

LDRB r11,[r12,r11,LSR #3] 3 5 @ mem8[tb1+(r1l1>>3)]
ADR r10, priority_masks s 5 ¢ priority mask
LDR r10, [r10,rl1l1,LSL #2] ; 5 : Toad mask

LDR rl4, =ic_Base ; 6 : int crtl addr
LDR r12, [r14,#IRQEnable] ; 6 : IRQ enable reg
AND rl2, rl2, rl0 ;3 6 : AND enable reg
STR r12, [rl14,#IRQEnableClear] ; 6 : disable ints
MRS rl4, cpsr 5 7 : copy cpsr

BIC rl4, rl4, #I Bit ;3 7 : clear I-bit
MSR cpsr_c, rl4 3 7 : enable IRQ

LDR pc, [pc, rll, LSL#2] 3 8 : jump to an ISR
NOP 5

DCD service_timerl ; timerl ISR

DCD service_commtx ; commtx ISR

DCD service_commrx 3 commrx ISR

DCD service_timer2 ; timer2 ISR

priority masks

DCD MASK 2 5 priority mask 2
DCD MASK 1 5 priority mask 1
DCD MASK 0 s priority mask 0
DCD MASK 3 s priority mask 3

priority table

DCB PRIORITY_O 5 priority 0
DCB PRIORITY 1 5 priority 1
DCB PRIORITY_2 s priority 2
DCB PRIORITY_3 s priority 3
ALIGN

The interrupt source can now be tested by comparing the highest to the lowest priority.
The first priority level that matches the interrupt source determines the priority level of
the incoming interrupt because each interrupt has a preset priority level. Once a match
is achieved, then the handler can branch to the routine that masks off the lower-priority
interrupts.

To disable the equal- or lower-priority interrupts, the handler enters a routine that first
calculates the priority level using the base address in register r11 and link register r14.

Following the SUB instruction register 11 will now contain the value 4, 12, 20, or 28.
These values correspond to the priority level of the interrupt multiplied by eight plus four.
Register r11 is then divided by eight and added to the address of the priority_table. Following
the LDRB register r11 will equal one of the priority interrupt numbers (0, 1, 2, or 3).

The priority mask can now be determined, using the technique of shifting left by two
and adding that to the register 10, which contains the address of the priority_mask.

356 Chapter 9 Exception and Interrupt Handling

SUMMARY

The base address for the interrupt controller is copied into register r14_irq and is used
to obtain the IRQEnable register in the controller and place it into register r12.

Register 710 contains the new mask. The next step is to clear the lower-priority
interrupts using this mask by performing a binary AND with the mask and r12 (IRQEnable
register) and storing the result into the IRQEnableClear register. It is now safe to enable
IRQ exceptions by clearing the i bit in the cpsr.

Lastly the handler needs to jump to the correct service routine, by modifying r11 (which
still contains the highest-priority interrupt) and the pc. Shifting register r11 left by two
(multiplying r11 by four) and adding it to the pc allows the handler to jump to the correct
routine by loading the address of the service routine directly into the pc. The jump table
must follow the instruction that loads the pc. There is an NOP between the jump table and
the LDR instruction that modifies the pc because the pcis pointing two instructions ahead
(or eight bytes).

Note that the priority mask table is in interrupt bit order, and the priority table is in
priority order.

Prioritized Standard Interrupt Handler

®m Handles higher-priority interrupts in a shorter time than lower-priority interrupts.
= Low interrupt latency.

®m Advantage: higher-priority interrupts treated with greater urgency with no duplication
of code to set external interrupt masks.

m Disadvantage: there is a time penalty since this handler requires two jumps, resulting
in the pipeline being flushed each time a jump occurs.

9.3.6 PRIORITIZED DIRECT INTERRUPT HANDLER

EXAMPLE

9.13

One difference between the prioritized direct interrupt handler and the prioritized standard
interrupt handler is that some of the processing is moved out of the handler into the
individual ISRs. The moved code masks out the lower-priority interrupts. Each ISR will
have to mask out the lower-priority interrupts for the particular priority level, which can
be a fixed number since the priority level has already been previously determined.

The second difference is that the prioritized direct interrupt handler jumps directly to the
appropriate ISR. Each ISR is responsible for disabling the lower-priority interrupts before
modifying the cpsr to reenable interrupts. This type of handler is relatively simple since the
masking is done by the individual ISR, but there is a small amount of code duplication since
each interrupt service routine is effectively carrying out the same task.

The bit x defines associate an interrupt source with a bit position within the interrupt
controller, which will be used to help mask the lower-priority interrupts within an ISR.

9.3 Interrupt Handling Schemes 357

Once the context is saved, the base address of the ISR table has to be loaded into register
r12. This register is used to jump to the correct ISR once the priority has been established
for the interrupt source.

I Bit EQU 0x80
PRIORITY_O EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY 2 EQU 0 5 Timer 1
PRIORITY 3 EQU 3 s Timer 2
BINARY_0 EQU 1<<PRIORITY_O ; 1<<2 0x00000004
BINARY_1 EQU 1<<PRIORITY_1 ; 1<<1 0x00000002
BINARY_2 EQU 1<<PRIORITY_ 2 ; 1<<0 0x00000001
BINARY 3 EQU 1<<PRIORITY 3 ; 1<<3 0x00000008
MASK 3 EQU BINARY 3
MASK 2 EQU MASK_3+BINARY_ 2
MASK 1 EQU MASK_2+BINARY_1
MASK 0 EQU MASK 1+BINARY 0
ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU Oxc
bit_timerl EQU 0
bit_commtx EQU 1
bit_commrx EQU 2
bit_timer2 EQU 3
IRQ_Handler ; instruction comment
SuUB rl4, rld, #4 ; rld_irg-=4
STMFD r13!, {rl14} ; save rl4 irq
MRS rl4, spsr ; Copy spsr_irq
STMFD r13!,{r10,r11,r12,r14} ; save context
LDR rl4, =ic_Base ; int crtl addr
LDR r10, [r14, #IRQStatus] ; load IRQ status
ADR r12, isr_table ; obtain ISR table
TST r10, #BINARY_O 5 if CommRx

LDRNE pc, [rl2, #PRIORITY 0<<2] ; then CommRx ISR

358 Chapter 9 Exception and Interrupt Handling

TST r10, #BINARY_1 ; if CommTx
LDRNE pc, [r12, #PRIORITY 1<<2] ; then CommTx ISR
TST r10, #BINARY 2 ; if Timerl
LDRNE pc, [r12, #PRIORITY 2<<2] ; then Timerl ISR
TST r10, #BINARY_ 3 ; if Timer2
LDRNE pc, [rl2, #PRIORITY 3<<2] ; then Timer2 ISR
B service_none
isr_table
DCD service_timerl ; timerl ISR
DCD service_commtx ; commtx ISR
DCD service_commrx ; commrx ISR
DCD service_timer2 ; timer2 ISR
priority masks
DCD MASK 2 ; priority mask 2
DCD MASK 1 ; priority mask 1
DCD MASK 0 ; priority mask 0
DCD MASK 3 ; priority mask 3

service_timerl

MOV r1l, #bit_timerl ; copy bit timerl

LDR rl4, =ic_Base ; int ctrl addr

LDR r12, [r14,#IRQEnable] ; IRQ enable register
ADR r10, priority_masks ; obtain priority addr
LDR r10, [r10,rll,LSL#2] ; load priority mask
AND rl2, rl12, rl0 ; AND enable reg

STR r12, [r14, #IRQEnableClear] ; disable ints

MRS rl4, cpsr ; copy cpsr

BIC rl4, rl4, #I Bit ; clear I-bit

MSR cpsr c, rl4 ; enable IRQ

<rest of the ISR>

The priority interrupt is established by checking the highest-priority interrupt first and
then working down to the lowest. Once a priority interrupt is identified, the pcis then loaded
with the address of the appropriate ISR. The indirect address is stored at the address of the
isr_table plus the priority level shifted two bits to the left (multiplied by four). Alternatively
you could use a conditional branch BNE.

The ISR jump table isr_table is ordered with the highest-priority interrupt at the
beginning of the table.

The service_timerl entry shows an example of an ISR used in a priority direct interrupt
handler. Each ISR is unique and depends upon the particular interrupt source.

A copy of the base address for the interrupt controller is placed into register r14_irg.
This address plus an offset is used to copy the IRQEnable register into register r12.

9.3 Interrupt Handling Schemes 359

The address of the priority mask table has to be copied into register r10so it can be used
to calculate the address of the actual mask. Register r11 is shifted left two positions, which
gives an offset of 0, 4, 8, or 12. The offset plus the address of the priority mask table address
is used to load the mask into register r10. The priority mask table is the same as for the
priority interrupt handler in the previous section.

Register 710 will contain the ISR mask, and register 712 will contain the current mask.
A binary AND is used to merge the two masks. Then the new mask is used to configure
the interrupt controller using the IRQEnableClear register. It is now safe to enable IRQ
exceptions by clearing the i bit in the cpsr.

The handler can continue servicing the current interrupt unless an interrupt with a
higher priority occurs, in which case that interrupt will take precedence over the current
interrupt.

SUMMARY Prioritized Direct Interrupt Handler

® Handles higher-priority interrupts in a shorter time. Goes directly to the specific ISR.
®m Low interrupt latency.
m Advantage: uses a single jump and saves valuable cycles to go to the ISR.

®m Disadvantage: each ISR has a mechanism to set the external interrupt mask to stop
lower-priority interrupts from halting the current ISR, which adds extra code to
each ISR.

9.3.7 PRIORITIZED GROUPED INTERRUPT HANDLER

EXAMPLE

9.14

Lastly, the prioritized grouped interrupt handler differs from the other prioritized interrupt
handlers since it is designed to handle a large set of interrupts. This is achieved by grouping
interrupts together and forming a subset, which can then be given a priority level.

The designer of an embedded system must identify each subset of interrupt sources
and assign a group priority level to that subset. It is important to be careful when selecting
the subsets of interrupt sources since the groups can determine the characteristics of the
system. Grouping the interrupt sources together tends to reduce the complexity of the
handler since it is not necessary to scan through every interrupt to determine the priority
level. Ifa prioritized grouped interrupt handler is well designed, it will dramatically improve
overall system response times.

This handler has been designed to have two priority groups. Timer sources are grouped into
group 0, and communication sources are grouped into group 1 (see Table 9.11.) Group 0
interrupts are given a higher priority than group 1 interrupts.

I Bit EQU 0x80

PRIORITY O EQU 2 ; Comms Rx

360 Chapter 9 Exception and Interrupt Handling

Table 9.11

Group interrupt sources.

Group Interrupts

0 timerl, timer2

1 commtx, commrx

PRIORITY 1 EQU 1 ; Comms Tx

PRIORITY_2 EQU 0 3 Timer 1

PRIORITY 3 EQU 3 ; Timer 2

BINARY 0 EQU 1<<PRIORITY_O ; 1<<2 0x00000004

BINARY 1 EQU 1<<PRIORITY_1 ; 1<<1 0x00000002

BINARY 2 EQU 1<<PRIORITY 2 ; 1<<0 0x00000001

BINARY 3 EQU 1<<PRIORITY_ 3 ; 1<<3 0x00000008

GROUP_0 EQU BINARY 2|BINARY 3

GROUP_1 EQU BINARY_O|BINARY_1

GMASK 1 EQU GROUP_1

GMASK_0 EQU GMASK_1+GROUP_0

MASK TIMER1 EQU GMASK 0

MASK_COMMTX EQU GMASK 1

MASK_COMMRX EQU GMASK 1

MASK_TIMER2 EQU GMASK 0

ic_Base EQU 0x80000000

IRQStatus EQU 0x0

IRQRawStatus EQU 0x4

IRQEnable EQU 0x8

IRQEnableSet EQU 0x8

IRQEnableClear EQU Oxc

interrupt_handler
SUB rl4, rl4,#4 ; rld_irg-=4
STMFD r13!, {rl14} ; save rl4 irg
MRS rl4, spsr ; copy spsr_irq
STMFD r13!, {rl0,rll,r12,rl4} ; save context
LDR rl4, =ic_Base ; int ctrl addr
LDR r10, [r14, #IRQStatus] ; load IRQ status
ANDS r11, rl0, #GROUP_O ; belong to GROUP 0
ANDEQS rl1, rl10, #GROUP 1 ; belong to GROUP_1

9.3 Interrupt Handling Schemes 361

AND r10, rll, #0xf s mask off top 24-bit
ADR r11, Towest significant_bit ; load LSB addr

LDRB rl1, [rl1, r10] ; load byte

B disable_lower priority 5 jump to routine

Towest_significant_bit

H 0 123456789abcdef

DCB oxff,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0
disable_lower_priority

CMP rll, #0xff 3 if unknown

BEQ unknown_condition s then jump

LDR r12, [r14, #IRQEnable] ; load IRQ enable reg

ADR r10, priority_mask 5 load priority addr

LDR r10, [r10, r11, LSL #2] ; mem32[r10+rll<<2]

AND rl2, rl2, rl0 s AND enable reg

STR r12, [r14, #IRQEnableClear] ; disable ints

MRS rl4, cpsr 3 Copy cpsr

BIC rl4, rl4, #I Bit ; clear I-bit

MSR cpsr_c, rl4 ; enable IRQ ints

LDR pc, [pc, ri1l, LSL #2] ; jump to an ISR

NOP

DCD service timerl ; timerl ISR

DCD service_commtx ; commtx ISR

DCD service_commrx ; commrx ISR

DCD service_timer2 ; timer2 ISR
priority mask

DCD MASK TIMER1 5 mask GROUP 0

DCD MASK_COMMTX 5 mask GROUP 1

DCD MASK_COMMRX 5 mask GROUP 1

DCD MASK TIMER2 5 mask GROUP 0

The GROUP_x defines assign the various interrupt sources to their specific priority level
by using a binary OR operation on the binary patterns. The GMASK x defines assign the
masks for the grouped interrupts. The MASK_x defines connect each GMASK x to a specific
interrupt source, which can then be used in the priority mask table.

After the context has been saved the interrupt handler loads the IRQ status register using
an offset from the interrupt controller base address.

The handler then identifies the group to which the interrupt source belongs by using
the binary AND operation on the source. The letter S postfixed to the instructions means
update condition flags in the cpsr.

Register r11 will now contain the highest-priority group 0 or 1. The handler now masks
out the other interrupt sources by applying a binary AND operation with 0xf.

362 Chapter 9 Exception and Interrupt Handling

Table 9.12

Lowest significant bit table.

Binary pattern ~ Value

0000 unknown
0001 0
0010 1
0011 0
0100 2
0101 0
0110 1
0111 0
1000 3
1001 0
1010 1
1011 0
1100 2
1101 0
1110 1
1111 0

The address of the lowest significant bit table is then loaded into register r11. A byte is
loaded from the start of the table using the value in register r10(0, 1, 2, or 3, see Table 9.12).
Once the lowest significant bit position is loaded into register r11, the handler branches to
a routine.

The disable_lower_priority interrupt routine first checks for a spurious (no longer
present) interrupt. If the interrupt is spurious, then the unknown_condition routine is
called. The handler then loads the IRQEnable register and places the result in register r12.

The priority mask is found by loading in the address of the priority mask table and
then shifting the data in register r11 left by two. The result, 0, 4, 8, or 12, is added to the
priority mask address. Register 710 then contains a mask to disable the lower-priority group
interrupts from being raised.

The next step is to clear the lower-priority interrupts using the mask by performing a
binary AND with the mask in registers r10 and r12 (IRQEnable register) and then clearing
the bits by saving the result into the IRQEnabTleClear register. At this point it is now safe
to enable IRQ exceptions by clearing the 7 bit in the cpsr.

Lastly the handler jumps to the correct interrupt service routine by modifying register
r11 (which still contains the highest-priority interrupt) and the pc. By shifting register r11
left by two and adding the result to the pcthe address of the ISR is determined. This address
is then loaded directly into the pc. Note that the jump table must follow the LDR instruction.
The NOP is present due to the ARM pipeline.

SUMMARY Prioritized Grouped Interrupt Handler

®m Mechanism for handling interrupts that are grouped into different priority levels.

® Low interrupt latency.

9.3 Interrupt Handling Schemes

363

m Advantage: useful when the embedded system has to handle a large number of inter-
rupts, and also reduces the response time since the determining of the priority level is

shorter.

®m Disadvantage: determining how the interrupts are grouped together.

9.3.8 VIC PL190 BASED INTERRUPT SERVICE ROUTINE

To take advantage of the vector interrupt controller, the IRQ vector entry has to be modified.

0x00000018 LDR pc,[pc,#-0xff0] ; IRQ pc=mem32[0xfffff030]

This instruction loads an ISR address from the memory mapped location 0xffffff030 into
the pc which bypasses any software interrupt handler since the interrupt source can be
obtained directly from the hardware. It also reduces interrupt latency since there is only a

single jump to a specific ISR.
Here is an example of VIC service routine:

INTON EQU 0x0000 ;
SYS32md EQU Ox1f H
IRQ32md EQU 0x12 H
I Bit EQU 0x80

VICBaseAddr EQU Oxfffff000 H

VICVectorAddr EQU VICBaseAddr+0x30 3

vector_service_routine

SUB rld,rl4,#4 5
STMFD r13!, {r0-r3,rl2,rl14} 5
MRS rl2, spsr 5
STMFD r13!,{r12} 5

<clear the interrupt source>

MSR cpsr_c, #INTON|SYS32md ;
<interrupt service code>

MSR cpsr_c, #I Bit|IRQ32md ;

LDMFD r13!, {r12} H
MSR spsr_cxsf, rl2 5
LDR rl,=VICVectorAddr 3

STR r0, [ri1] ;
LDMFD r13!, {r0-r3,rl2,pc}” ;

enable interrupts
system mode
IRQ mode

addr of VIC ctrl
isr address of int

rl4-=4

save context
copy spsr
save spsr

cpsr_c=ift_sys

cpsr_c=Ift_irq
restore (spsr_irq)
restore spsr

load VectorAddress
servicing complete
return

364 Chapter 9 Exception and Interrupt Handling

This routine saves the context and s psr_irg before clearing the interrupt source. Once this is
complete, the IRQ exceptions can be reenabled by clearing the ibit, and the processor mode
is set to system mode. The service routine can then process the interrupt in systern mode.
Once complete, the IRQ exceptions are disabled by setting the i bit, and the processor mode
is switched back to IRQ mode.

The spsr_irq is restored from the IRQ stack, preparing the routine to return to the
interrupted task.

The service routine then writes to the VICVectorAddr register in the controller. Writing
to this address indicates to the priority hardware that the interrupt has been serviced.

Note that since the VIC is basically a hardware interrupt handler, the array of ISR
addresses must be preprogrammed into the VIC before it is activated.

9.4 SUMMARY

An exception changes the normal sequential execution of instructions. There are seven
exceptions: Data Abort, Fast Interrupt Request, Interrupt Request, Prefetch Abort, Soft-
ware Interrupt, Reset, and Undefined Instruction. Each exception has an associated ARM
processor mode. When an exception is raised, the processor goes into a specific mode and
branches to an entry in the vector table. Each exception also has a priority level.

Interrupts are a special type of exception that are caused by an external peripheral.
The IRQ exception is used for general operating system activities. The FIQ exception is
normally reserved for a single interrupt source. Interrupt latency is the interval of time from
an external interrupt request signal being raised to the first fetch of an instruction of a
specific interrupt service routine (ISR).

We covered eight interrupt handling schemes, from a very simple nonnested interrupt
handler that handles and services individual interrupts, to an advanced prioritized grouped
interrupt handler that handles interrupts that are grouped into different priority levels.

This Page Intentionally Left Blank

CHAPTER

FIRMWARE

This chapter discusses firmware for ARM-based embedded systems. Firmware is an impor-
tant part of any embedded system since it is frequently the first code to be ported and
executed on a new platform. Firmware can vary from being a complete software embedded
system to just a simple initialization and bootloader routine. We have divided this chapter
into two sections.

The first section introduces firmware. In this section we define the term firmware
and describe two popular industry standard firmware packages available for the ARM
processor—ARM Firmware Suite and Red Hat’s RedBoot. These firmware packages are
general purpose and can be ported to different ARM platforms relatively easily and quickly.

The second section focuses on just the initialization and bootloader process. To help
with this, we have developed a simple example called Sandstone. Sandstone is designed to
initialize hardware, load an image into memory, and relinquish control of the pc over to
that image.

We start by first discussing firmware and introduce the two common ARM firmware
packages.

10.1 FIRMWARE AND BOOTLOADER

We realize that the use of terms may differ among engineers, but we will use the following
definitions:

®m The firmware is the deeply embedded, low-level software that provides an interface
between the hardware and the application/operating system level software. It resides
in the ROM and executes when power is applied to the embedded hardware
system. Firmware can remain active after system initialization and supports basic

367

368 Chapter 10 Firmware

Table 10.1

system operations. The choice of which firmware to use for a particular ARM-based
system depends upon the specific application, which can range from loading and exe-
cuting a sophisticated operating system to simply relinquishing control to a small
microkernel. Consequently, requirements can vary greatly from one firmware imple-
mentation to another. For example, a small system may require just minimal firmware
support to boot a small operating system. One of the main purposes of firmware is to
provide a stable mechanism to load and boot an operating system.

m The bootloader is a small application that installs the operating system or application
onto a hardware target. The bootloader only exists up to the point that the operating
system or application is executing, and it is commonly incorporated into the
firmware.

To help understand the features of different firmware implementations, we have a
common execution flow (see Table 10.1). Each stage is now discussed in more detail.

The first stage is to set up the target platform—in other words, prepare the environ-
ment to boot an operating system since an operating system expects a particular type
of environment before it can operate. This step involves making sure that the platform
is correctly initialized (for example, making sure that the control registers of a particular
microcontroller are placed at a known address or changing the memory map to an expected
layout).

Itis common for the same executable to operate on different cores and platforms. In this
case, the firmware has to identify and discover the exact core and platform it is operating
on. The core is normally recognized by reading register 0 in coprocessor 15, which holds
both the processor type and the manufacturer name. There are multiple ways to identify
the platform, from checking for the existence of a set of particular peripherals to simply
reading a preprogrammed chip.

Firmware execution flow.

Stage Features

Set up target platform Program the hardware system registers
Platform identification
Diagnostics
Debug interface
Command line interpreter

Abstract the hardware ~ Hardware Abstraction Layer
Device driver

Load a bootable image Basic filing system

Relinquish control Alter the pc to point into the new image

10.1 Firmware and Bootloader 369

Diagnostics software provides a useful way for quickly identifying basic hardware
malfunctions. Because of the nature of this type of software, it tends to be specific to
a particular piece of hardware.

Debug capabiliy is provided in the form of a module or monitor that provides software
assistance for debugging code running on a hardware target. This assistance includes the
following:

® Setting up breakpoints in RAM. A breakpoint allows a program to be interrupted and
the state of the processor core to be examined.

m Listing and modifying memory (using peek and poke operations).
m Showing current processor register contents.

® Disassembling memory into ARM and Thumb instruction mnemonics.

These are interactive functions: you can either send the commands through a command
line interpreter (CLI) or through a dedicated host debugger attached to the target platform.
Unless the firmware has access to the internal hardware debug circuitry, only RAM images
can be debugged through a software debug mechanism.

The CLI is commonly available on the more advanced firmware implementations. It
allows you to change the operating system to be booted by altering the default configurations
through typing commands at a command prompt. For embedded systems, the CLI is
commonly controlled through a host terminal application. Communication between the
host and the target is normally over a serial or network connection.

The second stage is to abstract the hardware. The Hardware Abstraction Layer (HAL) is
a software layer that hides the underlying hardware by providing a set of defined pro-
gramming interfaces. When you move to a new target platform, these programming
interfaces remain constant but the underlying implementation changes. For instance, two
target platforms might use a different timer peripheral. Each peripheral would require
new code to initialize and configure the device. The HAL programming interface would
remain unaltered even though both the hardware and software may differ greatly between
implementations.

The HAL software that communicates with specific hardware peripherals is called a
device driver. A device driver provides a standard application programming interface (API)
to read and write to a specific peripheral.

The third stage is to load a bootable image. The ability of firmware to carry out this
activity depends upon the type of media used to store the image. Note that not all operating
system images or application images need to be copied into RAM. The operating system
image or application image can simply execute directly from ROM.

ARM processors are normally found in small devices that include flash ROM. A common
feature is a simple flash ROM filing system (FFS), which allows multiple executable images
to be stored.

Other media devices, such as hard drives, require that the firmware incorporates a
device driver that is suitable for accessing the hardware. Accessing the hardware requires

370 Chapter 10 Firmware

that the firmware has knowledge of the underlying filing system format, which gives the
firmware the ability to read the filing system, find the file that contains the image, and copy
the image into memory. Similarly, if the image is on the network, then the firmware must
also understand the network protocol as well as the Ethernet hardware.

Theload process has to take into account the image format. The most basic image format
is plain binary. A plain binary image does not contain any header or debug information.
A popular image format for ARM-based systems is Executable and Linking Format (ELF).
This format was originally developed for UNIX systems and replaced the older format
called Common Object File Format (COFF). ELF files come in three forms: relocatable,
executable, and shared object.

Most firmware systems must deal with the executable form. Loading an ELF image
involves deciphering the standard ELF header information (that is, execution address, type,
size, and so on). The image may also be encrypted or compressed, in which case the load
process would involve performing decryption or decompression on the image.

The fourth stage is to relinquish control. This is where the firmware hands over control
of the platform to an operating system or application. Note that not all firmware hands
over control; instead the firmware can remain the controlling software on the platform.

Firmware designed to pass control to an operating system may become inactive once
the operating system has control. Alternatively, the Machine Independent Layer (MIL)
or Hardware Abstraction Layer (HAL) part of the firmware can remain active. This layer
exposes, through the SWI mechanism, a standard application interface for specific hardware
devices.

Relinquishing control on an ARM system means updating the vector table and modify-
ing the pc. Updating the vector table involves modifying particular exception and interrupt
vectors so that they point to specialized operating system handlers. The pchas to be modified
so that it points to the operating system entry point address.

For more sophisticated operating systems, such as Linux, relinquishing control requires
that a standard data structure be passed to the kernel. This data structure explains the
environment that the kernel will be running in. For example, one field may include the
amount of available RAM on the platform, while another field includes the type of MMU
being used.

We use these definitions to describe two common firmware suites.

10.1.1 ARM FIRMWARE SUITE

ARM has developed a firmware package called the ARM Firmware Suite (AFS). AFS is
designed purely for ARM-based embedded systems. It provides support for a number of
boards and processors including the Intel XScale and StrongARM processors. The pack-
age includes two major pieces of technology, a Hardware Abstraction Layer called uHAL
(pronounced micro-HAL) and a debug monitor called Angel.

MHAL provides a low-level device driver framework that allows it to operate over dif-
ferent communication devices (for example, USB, Ethernet, or serial). It also provides a

10.1 Firmware and Bootloader 371

standard API. Consequently, when a port takes place, the various hardware-specific parts
must be implemented in accordance with the various tHAL API functions.

This has the advantage of making the porting process relatively straightforward since
you have a standard function framework to work within. Once the firmware is ported, the
task of moving an operating system over to the new target platform can take place. The
speed of this activity depends upon whether the OS takes advantage of the ported nHAL
API call to access the hardware.

1HAL supports these main features:

m System initialization—setting up the target platform and processor core. Depending
upon the complexity of the target platform, this can either be a simple or complicated
task.

® Polled serial driver—used to provide a basic method of communication with a host.

® LED support—allows control over the LEDs for simple user feedback. This provides an
application the ability to display operational status.

m Timer support—allows a periodic interrupt to be set up. This is essential for preemptive
context switching operating systems that require this mechanism.

m [nterrupt controllers—support for different interrupt controllers.

The boot monitor in #HAL contains a CLI.

The second technology, Angel, allows communication between a host debugger and
a target platform. It allows you to inspect and modify memory, download and execute
images, set breakpoints, and display processor register contents. All this control is through
the host debugger. The Angel debug monitor must have access to the SWI and IRQ or FIQ
vectors.

Angel uses SWI instructions to provides a set of APIs that allow a program to open,
read, and write to a host filing system. IRQ/FIQ interrupts are used for communication
purposes with the host debugger.

10.1.2 RED HAT REDBOOT

RedBoot is a firmware tool developed by Red Hat. It is provided under an open source

license with no royalties or up front fees. RedBoot is designed to execute on different CPUs

(for instance, ARM, MIPS, SH, and so on). It provides both debug capability through GNU

Debugger (GDB), as well as a bootloader. The RedBoot software core is based on a HAL.
RedBoot supports these main features:

®m Communication—configuration is over serial or Ethernet. For serial, X-Modem proto-
colis used to communicate with the GNU Debugger (GDB). For Ethernet, TCP is used
to communicate with GDB. RedBoot supports a range of network standards, such as
bootp, telnet, and tftp.

372 Chapter 10 Firmware

m Flash ROM memory management—provides a set of filing system routines that can
download, update, and erase images in flash ROM. In addition, the images can either
be compressed or uncompressed.

m Full operating system support—supports the loading and booting of Embedded Linux,
Red Hat eCos, and many other popular operating systems. For Embedded Linux,
RedBoot supports the ability to define parameters that are passed directly to the kernel
upon booting.

102 EXAMPLE: SANDSTONE

We have designed Sandstone to be a minimal system. It carries out only the following tasks:
set up target platform environment, load a bootable image into memory, and relinquish
control to an operating system. It is, however, still a real working example.

The implementation is specific to the ARM Evaluator-7T platform, which includes an
ARM7TDMI processor. This example shows you exactly how a simple platform can be set
up and a software payload can be loaded into memory and booted. The payload can either
be an application or operating system image. Sandstone is a static design and cannot be
configured after the build process is complete. Table 10.2 lists the basic characteristics of
Sandstone.

We will walk you through the directory layout and code structure. The directory layout
shows you where the source code is located and where the different build files are placed.
The code structure focuses more on the actual initialization and boot process.

Note that Sandstone is written entirely in ARM assembler and is a working piece of code
that can be used to intialize target hardware and boot any piece of software, within reason,
on the ARM Evaluator-7T.

10.2.1 SANDSTONE DIRECTORY LAYOUT

Table 10.2

Sandstone can be found on our Web site. If you take a look at Sandstone, you will see that
the directory structure is as shown in Figure 10.1. The structure follows a standard style

Summary of Sandstone.
Feature Configuration
Code ARM instructions only

Tool chain ARM Developer Suite 1.2
Image size 700 bytes

Source 17 KB

Memory remapped

Figure 10.1

10.2 Example: Sandstone 373

[Sand]

I I I
makefile readme.txt [build] [payload]

slos.bin

I I
[src] [obj] [image] [log]

sand.s

Standstone directory layout.

that we will continue to use in further chapters. The sandstone source file sand. s is located
under the sand/build/src directory.

The object file produced by the assembler is placed under the build/obj directory.
The object file is then linked, and the final Sandstone image is placed under the
sand/build/image directory. This image includes both the Sandstone code and the pay-
load. The payload image, the image that is loaded and booted by Sandstone, is found under
the sand/pay1oad directory.

For information about the Sandstone build procedure, take a look at the readme. txt
file under the sand directory. This file contains a description of how to build the example
binary image for the ARM Evaluator-7T.

10.2.2 SANDSTONE CODE STRUCTURE

Table 10.3

Sandstone consists of a single assembly file. The file structure is broken down into a
number of steps, where each step corresponds to a stage in the execution flow of Sandstone
(see Table 10.3).

Sandstone execution flow.

Step Description

1 Take the Reset exception

2 Start initializing the hardware

3 Remap memory

4 Initialize communication hardware

5 Bootloader—copy payload and relinquish control

374 Chapter 10 Firmware

We will take you through these steps, trying to avoid as much as possible the platform-
specific parts. You should note that some specific parts are unavoidable (for example,
configuring system registers and memory remapping).

The initial goal of Sandstone is to set up the target platform environment so that it can
provide some form of feedback to indicate that the firmware is running and has control of
the platform.

10.2.2.1 Step 1: Take the Reset Exception

Execution begins with a Reset exception. Only the reset vector entry is required in the
default vector table. It is the very first instruction executed. You can see from the code
here that all the vectors, apart from the reset vector, branch to a unique dummy handler—a
branch instruction that causes an infinite loop. It is assumed that no exception or interrupt
will occur during the operation of Sandstone. The reset vector is used to move the execution
flow to the second stage.

AREA start,CODE,READONLY
ENTRY

sandstone_start

B sandstone_initl ; reset vector
B ex_und ; undefined vector
B ex_swi s Swi vector
B ex_pabt ; prefetch abort vector
B ex_dabt ; data abort vector
NOP ; not used...
int_irq ; irg vector
int_fiq ; fig vector
ex_und B ex_und ; loop forever
ex_swi B ex_swi ; loop forever
ex_dabt B ex_dabt ; loop forever
ex_pabt B ex_pabt ; loop forever
int_irq B int_irq ; loop forever
int_fiq B int_fiq ; loop forever

sandstone_start is located at address 0x00000000.
The results of executing step 1 are the following:

® Dummy handlers are set up.

m Control is passed to code to initialize the hardware.

10.2 Example: Sandstone 375

10.2.2.2 Step 2: Start Initializing the Hardware

The primary phase in initializing hardware is setting up system registers. These registers
have to be set up before accessing the hardware. For example, the ARM Evaluator-7T has a
seven-segment display, which we have chosen to be used as a feedback tool to indicate that
the firmware is active. Before we can set up the segment display, we have to position the
base address of the system registers to a known location. In this case, we have picked the
default address 0x03f 0000, since this places all the hardware system registers away from
both ROM and RAM, separating the peripherals and memory.

Consequently, all the microcontroller memory-mapped registers are located as an offset
from 0x03ff0000. This is achieved using the following code:

sandstone_initl
LDR r3, =SYSCFG ; where SYSCFG=0x03ff0000
LDR r4, =0x03ffffa0
STR rd, [r3]

Register r3 contains the default system register base address and is used to set the new
default address, as well as other specific attributes such as the cache. Register r4 contains
the new configuration. The top 16 bits contain the high address of the new system register
base address 0x03ff, and the lower 16 bits contain the new attribute settings 0xffa0.

After setting up the system register base address, the segment display can be configured.
The segment display hardware is used to show Sandstone’s progress. Note that the segment
display is not shown since it is hardware specific.

The results of executing step 2 are the following:

m The system registers are set from a known base address—0x03f0000.

®m The segment display is configured, so that it can be used to display progress.

10.2.2.3 Step 3: Remap Memory

One of the major activities of hardware initialization is to set up the memory environment.
Sandstone is designed to initialize SRAM and remap memory. This process occurs fairly
early on in the initialization of the system. The platform starts in a known memory state,
as shown in Table 10.4.

As you can see, when the platform is powered up, only flash ROM is assigned a location
in the memory map. The two SRAM banks (0 and 1) have not been initialized and are not
available. The next stage is to bring in the two SRAM banks and remap flash ROM to a new
location. This is achieved using the following code:

LDR r14, =sandstone_init2
LDR r4, =0x01800000 ; new flash ROM location

376 Chapter 10 Firmware

Table 10.4

Table 10.5

Initial memory state.

Memory type Start address End address Size

Flash ROM 0x00000000 0x00080000 512K
SRAM bank 0 Unavailable unavailable 256K
SRAM bank 1 Unavailable unavailable 256K

ADD rl4, rl4, r4
ADRL r0, memorymaptable str
LDMIA r0, {rl-ri2}

LDR r0, =EXTDBWTH ; =(SYSCFG + 0x3010)
STMIA r0, {rl-r12}
MoV pc, rld ; jump to remapped memory

sandstone_init2
; Code after sandstone_init2 executes @ +0x1800000

The first part of the code calculates the absolute address of the routine sandstone_init2before
remapping takes place. This address is used by Sandstone to jump to the next routine in
the new remapped environment.

The second part carries out the memory remapping. The new memory map data is
loaded into registers rl to r12, from a structure pointed by memorymaptable_str. This
structure, using the registers, is then written to the memory controller offset 0x3010 from
system configuration register. Once this is complete, the new memory map as shown in
Table 10.5 is active.

You can see that the SRAM banks are now available, and the flash ROM is set to a higher
address. The final part is to jump to the next routine, or stage, of the firmware.

This jump is achieved by taking advantage of the ARM pipeline. Even though the
new memory environment is active, the next instruction has already been loaded into the
pipeline. The next routine can be called by moving the contents of register r14 (the address
sandstone_init2) into the pc. We achieve this by using a single MOV instruction that
follows immediately after the remap code.

Remapping.

Type Start address End address Size

Flash ROM 0x01800000 0x01880000 512K
SRAM bank 0 0x00000000 0x00040000 256K
SRAM bank 1 0x00040000 0x00080000 256K

10.2 Example: Sandstone 377

The results of executing step 3 are the following:

® Memory has been remapped as shown in Table 10.5.

® pc now points to the next step. This address is located in the newly remapped flash
ROM.

10.2.2.4 Step 4: Initialize Communication Hardware

Communication initialization involves configuring a serial port and outputting a standard
banner. The banner is used to show that the firmware is fully functional and memory has
been successfully remapped. Again, because the code for initializing the serial port on the
ARM Evaluator-7T is hardware specific, it is not shown.

The serial port is set to 9600 baud, no parity, one stop bit, and no flow control. If a
serial cable is attached to the board, then the host terminal has to be configured with these
settings.

The results of executing step 4 are the following:

m Serial port initialized—9600 baud, no parity, one stop bit, and no flow control.

m Sandstone banner sent out through the serial port:

Sandstone Firmware (0.01)

- platform e7t
- status alive
O 11=11110) 2N remapped

+ booting payload ...

10.2.2.5 Step 5: Bootloader—Copy Payload and Relinquish Control

The final stage involves copying a payload and relinquishing control of the pc over to the
copied payload. This is achieved using the code shown here. The first part of the code sets
up the registers r12, r13, and r14 used in the block copy. The bootloader code assumes that
the payload is a plain binary image that requires no deciphering or uncompressing.

sandstone_load_and_boot
MoV r13,#0 ; destination addr
LDR r12,payload start address ; start addr
LDR rl14,payload_end address ; end addr

378 Chapter 10 Firmware

_copy
LDMIA r12!,{r0-r11}
STMIA r13!,{r0-r11}
CMP rl2,rl4
BLT _copy
MoV pc,#0

payload_start_address

DCD startAddress
payload_end address

DCD endAddress

Destination register r13 points to the beginning of SRAM, in this case 0x00000000.
The source register 12 points to the start of the payload, and the source end register r14
points to the end of the payload. Using these registers, the payload is then copied into
SRAM.

Control of the pcis then relinquished to the payload by forcing the pcto the entry address
of the copied payload. For this particular payload the entry point is address 0x00000000.
The payload now has control of the system.

The results of executing step 5 are the following:

®m Payload copied into SRAM, address 0x00000000.
m Control of the pcis relinquished to the payload; pc = 0x00000000.

m The system is completely booted. The following output is shown on the serial port:

Sandstone Firmware (0.01)

- platform e/t
- status ... alive
- MEMOTY vevuvuennnn remapped

+ booting payload ...

Simple Little 0S (0.09)
- initialized ok

- running on e/t

e/t:

CHAPTER

CACHES

A cache is a small, fast array of memory placed between the processor core and main
memory that stores portions of recently referenced main memory. The processor uses
cache memory instead of main memory whenever possible to increase system performance.
The goal of a cache is to reduce the memory access bottleneck imposed on the processor
core by slow memory.

Often used with a cache is a write buffer—a very small first-in-first-out (FIFO) memory
placed between the processor core and main memory. The purpose of a write buffer is to
free the processor core and cache memory from the slow write time associated with writing
to main memory.

The word cacheis a French word meaning “a concealed place for storage.” When applied
to ARM embedded systems, this definition is very accurate. The cache memory and write
buffer hardware when added to a processor core are designed to be transparent to software
code execution, and thus previously written software does not need to be rewritten for use
on a cached core. Both the cache and write buffer have additional control hardware that
automatically handles the movement of code and data between the processor and main
memory. However, knowing the details of a processor’s cache design can help you create
programs that run faster on a specific ARM core.

Since the majority of this chapter is about the wonderful things a cache can do to make
programs run faster, the question arises, “Are there any drawbacks created by having a cache
in your system?” The answer is yes. The main drawback is the difficulty of determining the
execution time of a program. Why this is a problem will become evident shortly.

Since cache memory only represents a very small portion of main memory, the cache fills
quickly during program execution. Once full, the cache controller frequently evicts existing
code or data from cache memory to make more room for the new code or data. This eviction
process tends to occur randomly, leaving some data in cache and removing others. Thus,
at any given instant in time, a value may or may not be stored in cache memory.

403

404 Chapter 12 Caches

Because data may or may not be present in cache at any given pointin time, the execution
time of a routine may vary slightly from run to run due to the difference between the time
it takes to use data immediately out of cache memory and the time it takes to load a cache
line from main memory.

So, with that caveat, we begin by showing where caches fit in a standard memory hier-
archy and introduce the principle of locality of reference to explain why a cache improves
system performance. We then describe cache architectures in general and define a set of
terms used by the ARM community. We end the chapter with example code showing how
to clean and flush caches and to lock code and data segments in cache.

12.1 THE MEMORY HIERARCHY AND CACHE MEMORY

In Chapter 1 we introduced the memory hierarchy in a computer system. Figure 12.1
reviews some of this information to show where a cache and write buffer fit in the

hierarchy.
I
: Processor | Register file |
| core : | :
Chip | I I I
| Tightly coupled | ; :
o _: memory { | Level 1 cache |— —>| Write buffer | i
1 f 2 | — |
i / SRAM \T i J: E_ !
_—— N SEaE
\ memory o :
Board i DRAM U R i__:________:
. l :
i : l l
: Flash and other board-level nonvolatile memory . -i _______ ‘
______ . ,
i i Read path
Device | Secondar . -
: y Disk, tape, and network storage
! storage Write path

Figure12.1 Memory hierarchy.

12.1 The Memory Hierarchy and Cache Memory 405

The innermost level of the hierarchy is at the processor core. This memory is so tightly
coupled to the processor that in many ways it is difficult to think of it as separate from
the processor. This memory is known as a register file. These registers are integral to the
processor core and provide the fastest possible memory access in the system.

At the primary level, memory components are connected to the processor core through
dedicated on-chip interfaces. It is at this level we find tightly coupled memory (TCM) and
level 1 cache. We talk more about caches in a moment.

Also at the primary level is main memory. It includes volatile components like SRAM
and DRAM, and nonvolatile components like flash memory. The purpose of main memory
is to hold programs while they are running on a system.

The next level is secondary storage—large, slow, relatively inexpensive mass storage
devices such as disk drives or removable memory. Also included in this level is data derived
from peripheral devices, which are characterized by their extremely long access times.
Secondary memory is used to store unused portions of very large programs that do not fit
in main memory and programs that are not currently executing.

It is useful to note that a memory hierarchy depends as much on architectural design as
on the technology surrounding it. For example, TCM and SRAM are of the same technology
yet differ in architectural placement: TCM is located on the chip, while SRAM is located on
a board.

A cache may be incorporated between any level in the hierarchy where there is a
significant access time difference between memory components. A cache can improve
system performance whenever such a difference exists. A cache memory system takes
information stored in a lower level of the hierarchy and temporarily moves it to a higher
level.

Figure 12.1 includes a level 1 (L1) cache and write buffer. The L1 cache is an array of
high-speed, on-chip memory that temporarily holds code and data from a slower level.
A cache holds this information to decrease the time required to access both instructions
and data. The write buffer is a very small FIFO buffer that supports writes to main memory
from the cache.

Not shown in the figure is a level 2 (L2) cache. An L2 cache is located between the
L1 cache and slower memory. The L1 and L2 caches are also known as the primary and
secondary caches.

Figure 12.2 shows the relationship that a cache has with main memory system and the
processor core. The upper half of the figure shows a block diagram of a system without a
cache. Main memory is accessed directly by the processor core using the datatypes supported
by the processor core. The lower half of the diagram shows a system with a cache. The cache
memory is much faster than main memory and thus responds quickly to data requests by
the core. The cache’s relationship with main memory involves the transfer of small blocks
of data between the slower main memory to the faster cache memory. These blocks of data
are known as cache lines. The write buffer acts as a temporary buffer that frees available
space in the cache memory. The cache transfers a cache line to the write buffer at high speed
and then the write buffer drains it to main memory at slow speed.

406 Chapter 12 Caches

Word, byte access -
Processor Main

core Slow | memory

Noncached system

Word, byte Block
access transfer :
Processor Cache Main
SaIE Fast Slow memory
Fast Write Slow|
buffer

Word, byte access

Slow

Cached system

Figure 12.2 Relationship that a cache has between the processor core and main memory.

12.1.1 CAcCHES AND MEMORY MANAGEMENT UNITS

Ifa cached core supports virtual memory, it can be located between the core and the memory
management unit (MMU), or between the MMU and physical memory. Placement of the
cache before or after the MMU determines the addressing realm the cache operates in
and how a programmer views the cache memory system. Figure 12.3 shows the difference
between the two caches.

A logical cache stores data in a virtual address space. A logical cache is located between
the processor and the MMU. The processor can access data from a logical cache directly
without going through the MMU. A logical cache is also known as a virtual cache.

A physical cache stores memory using physical addresses. A physical cache is located
between the MMU and main memory. For the processor to access memory, the MMU
must first translate the virtual address to a physical address before the cache memory can
provide data to the core.

ARM cached cores with an MMU use logical caches for processor families ARM7
through ARM10, including the Intel StrongARM and Intel XScale processors. The ARM11
processor family uses a physical cache. See Chapter 14 for additional information on the
operation of the MMU.

The improvement a cache provides is possible because computer programs execute
in nonrandom ways. Predictable program execution is the key to the success of cached
systems. If a program’s accesses to memory were random, a cache would provide little

12.1 The Memory Hierarchy and Cache Memory 407

1
Virtual ' Physical
memory ' memory
1
Offset Address bus
1
1
1
Translation !
base * MMU
Cache :
1
Data bus
1
|
Processor : Main
Logicall cache memory
Virtual | Physical
memory : memory
1
Offset Addre:ss bus
[
1
Translation 1
base
MMU !
; | Cache |
1
Datei bus
[
1
Processor ! Main
Physical cache memory

Figure 12.3 Logical and physical caches.

improvement to overall system performance. The principle of locality of reference explains
the performance improvement provided by the addition of a cache memory to a system.
This principle states that computer software programs frequently run small loops of code
that repeatedly operate on local sections of data memory.

The repeated use of the same code or data in memory, or those very near, is the reason
a cache improves performance. By loading the referenced code or data into faster memory
when first accessed, each subsequent access will be much faster. It is the repeated access to
the faster memory that improves performance.

408 Chapter 12 Caches

The cache makes use of this repeated local reference in both time and space. If the
reference is in time, it is called temporal locality. If it is by address proximity, then it is called
spatial locality.

122 CACHE ARCHITECTURE

ARM uses two bus architectures in its cached cores, the Von Neumann and the Harvard.
The Von Neumann and Harvard bus architectures differ in the separation of the instruction
and data paths between the core and memory. A different cache design is used to support
the two architectures.

In processor cores using the Von Neumann architecture, there is a single cache used
for instruction and data. This type of cache is known as a unified cache. A unified cache
memory contains both instruction and data values.

The Harvard architecture has separate instruction and data buses to improve overall
system performance, but supporting the two buses requires two caches. In processor cores
using the Harvard architecture, there are two caches: an instruction cache (I-cache) and
a data cache (D-cache). This type of cache is known as a split cache. In a split cache,
instructions are stored in the instruction cache and data values are stored in the data cache.

We introduce the basic architecture of caches by showing a unified cache in Figure 12.4.
The two main elements of a cache are the cache controller and the cache memory. The
cache memory is a dedicated memory array accessed in units called cache lines. The cache
controller uses different portions of the address issued by the processor during a memory
request to select parts of cache memory. We will present the architecture of the cache
memory first and then proceed to the details of the cache controller.

12.2.1 BAsIic ARCHITECTURE OF A CACHE MEMORY

A simple cache memory is shown on the right side of Figure 12.4. It has three main parts:
a directory store, a data section, and status information. All three parts of the cache memory
are present for each cache line.

The cache must know where the information stored in a cache line originates from in
main memory. It uses a directory store to hold the address identifying where the cache line
was copied from main memory. The directory entry is known as a cache-tag.

A cache memory must also store the data read from main memory. This information is
held in the data section (see Figure 12.4).

The size of a cache is defined as the actual code or data the cache can store from main
memory. Not included in the cache size is the cache memory required to support cache-tags
or status bits.

There are also status bits in cache memory to maintain state information. Two common
status bits are the valid bit and dirty bit. A valid bit marks a cache line as active, meaning
it contains live data originally taken from main memory and is currently available to the

12.2 Cache Architecture 409

Address issued Cache Cache
by processor core controller memory
31 Mi
Directory 15
Hit store Status Data
A A A
Tag V] 1
Q ’_: Cache-tag | v [d | word3 | word2 | wordl [word0 }Cache
(Cache-tag)v |d [word3 | word2 |wordl | word0 line
12 Cache-tag [v [d | word3 | word2 | wordl | wordQ
11 ’
—»—\ .
. Set Cache-tag | v|d | word3 | word2 | word1 | word0
index Cache-tag | v|d|word3| word2 [wordl [wordO || Address/data
Cache-tag | v|d | word3 | word2 |wordl | wordO || ¢
g— Cache-tag | v |d | word3 [word2 [wordl | wordO [+—
Cache-tag | v [d [word3 | word2 | word1l | word0
Data —
index J L J
Y
0 — 1

Figure 12.4 A 4 KB cache consisting of 256 cache lines of four 32-bit words.

processor core on demand. A dirty bit defines whether or not a cache line contains data
that is different from the value it represents in main memory. We explain dirty bits in more
detail in Section 12.3.1.

12.2.2 BAsic OPERATION OF A CACHE CONTROLLER

The cache controller is hardware that copies code or data from main memory to cache
memory automatically. It performs this task automatically to conceal cache operation from
the software it supports. Thus, the same application software can run unaltered on systems
with and without a cache.

The cache controller intercepts read and write memory requests before passing them on
to the memory controller. It processes a request by dividing the address of the request into
three fields, the tag field, the set index field, and the data index field. The three bit fields are
shown in Figure 12.4.

First, the controller uses the set index portion of the address to locate the cache line
within the cache memory that might hold the requested code or data. This cache line
contains the cache-tag and status bits, which the controller uses to determine the actual
data stored there.

410 Chapter 12 Caches

The controller then checks the valid bit to determine if the cache line is active, and
compares the cache-tag to the tag field of the requested address. If both the status check
and comparison succeed, it is a cache hit. If either the status check or comparison fails, it is
a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache
memory and provides the requested code or data to the processor. The copying of a cache
line from main memory to cache memory is known as a cache line fill.

On a cache hit, the controller supplies the code or data directly from cache memory to
the processor. To do this it moves to the next step, which is to use the data index field of
the address request to select the actual code or data in the cache line and provide it to the
processor.

12.2.3 THE RELATIONSHIP BETWEEN CACHE AND MAIN MEMORY

Having a general understanding of basic cache memory architecture and how the cache
controller works provides enough information to discuss the relationship that a cache has
with main memory.

Figure 12.5 shows where portions of main memory are temporarily stored in cache
memory. The figure represents the simplest form of cache, known as a direct-mapped cache.
In a direct-mapped cache each addressed location in main memory maps to a single location
in cache memory. Since main memory is much larger than cache memory, there are many
addresses in main memory that map to the same single location in cache memory. The
figure shows this relationship for the class of addresses ending in 0x824.

The three bit fields introduced in Figure 12.4 are also shown in this figure. The set index
selects the one location in cache where all values in memory with an ending address of
0x824 are stored. The data index selects the word/halfword/byte in the cache line, in this
case the second word in the cache line. The tag field is the portion of the address that is
compared to the cache-tag value found in the directory store. In this example there are one
million possible locations in main memory for every one location in cache memory. Only
one of the possible one million values in the main memory can exist in the cache memory
at any given time. The comparison of the tag with the cache-tag determines whether the
requested data is in cache or represents another of the million locations in main memory
with an ending address of 0x824.

During a cache line fill the cache controller may forward the loading data to the core at
the same time it is copying it to cache; this is known as data streaming. Streaming allows a
processor to continue execution while the cache controller fills the remaining words in the
cache line.

If valid data exists in this cache line but represents another address block in main
memory, the entire cache line is evicted and replaced by the cache line containing the
requested address. This process of removing an existing cache line as part of servicing a
cache miss is known as eviction—returning the contents of a cache line to main memory
from the cache to make room for new data that needs to be loaded in cache.

12.2 Cache Architecture 411

Main memory

OXFFFFFFFF

O0xFFFFF0O00

O0xFFFFE000

0x00003000

0x00002000

4 KB

OXOOOOIOOO{
0x00000000

OxFFFFF824
OxFFFFES24 4 KB cache memory
(direct mapped)
OxFFF
o i
: —
\/\ , >— Cache-tag | v | d [word3 | word2 [word1 | word0 0x820
— -,
0x00002824 [
- 0x000
0x00001824
0x00000824 (—Jﬁ A

[XXXXX | 8 2

tag set index | data index
31 12 11 43 0

Address issued by processor core

Figure12.5 How main memory maps to a direct-mapped cache.

A direct-mapped cache is a simple solution, but there is a design cost inherent in having
a single location available to store a value from main memory. Direct-mapped caches are
subject to high levels of thrashing—a software battle for the same location in cache memory.
The result of thrashing is the repeated loading and eviction of a cache line. The loading and
eviction result from program elements being placed in main memory at addresses that map
to the same cache line in cache memory.

Figure 12.6 takes Figure 12.5 and overlays a simple, contrived software procedure to
demonstrate thrashing. The procedure calls two routines repeatedly in a do while loop.
Each routine has the same set index address; that is, the routines are found at addresses in
physical memory that map to the same location in cache memory. The first time through
the loop, routine A is placed in the cache as it executes. When the procedure calls routine B,
itevicts routine A a cache line at a time as it is loaded into cache and executed. On the second
time through the loop, routine A replaces routine B, and then routine B replaces routine A.

412 Chapter 12 Caches

4 KB,
direct-mapped
unified cache

. OxFFF
N\
@ 0x00002480
0x00002000 L
@ 0x00001480 0x480
0x00001000 "
@ 0x00000480
0x00000000 0x000
Main memory Cache memory
do

{
routineA();
routineB();

X==3
} while (x>0)

Software procedure

Figure 12.6 Thrashing: two functions replacing each other in a direct-mapped cache.

Repeated cache misses result in continuous eviction of the routine that not running. This
is cache thrashing.

12.2.4 SET ASSOCIATIVITY

Some caches include an additional design feature to reduce the frequency of thrashing (see
Figure 12.7). This structural design feature is a change that divides the cache memory into
smaller equal units, called ways. Figure 12.7 is still a four KB cache; however, the set index
now addresses more than one cache line—it points to one cache line in each way. Instead
of one way of 256 lines, the cache has four ways of 64 lines. The four cache lines with the
same set index are said to be in the same set, which is the origin of the name “set index.”

413

12.2 Cache Architecture

‘SpIOMm

INOJ SUTBJUOD JUI[dYOED YT, *SIUI[JYOed F9 Jurureuod yoed ‘sAem Inoj ojur pajeredos

oIt OoIgm nwoﬁﬂ Aded [e10] 9G¢ Sey ayded 3], "dYded 2AIJeIDOSSE 198 \A.@SJ:JOM ,mvH YV LTl uhsmﬂm

snq «
EIEP/SSAIPPY A \
opiom | [p1om | zp1om | gpiom | p| A | Ser-oqoe)
opiom | 1p1om | zprom [gpiom | p[a] Ser-oqoen —0
opiom | 1prom | zprom [gpiom|p[a]Ser-oqoen | D|| =7 Hl xopur
opiom | [pIom [gpiom [gpiom [p [a] Se-ayoe) |P|ID [ereq
Kem opiom | p1om [zpiom | epiom [p | a{Ber-oyoed Fo1pTp ¢
3ad saurl < | Fp1om | [piom | gpiom | gpiom | p| A | se1-0008)) | D 1D —
YR $9 DiEn=
2P|
DIID D] xoput
opiom [1prom| zpiom [cpiom|p[a] Ser-aqoe) D Wk A ©s
opiom | 1p1om | zp1om | gpiom | p| A [Ser-oqoey — .
: ~ M A—— 5157 F ot
vlRQq smeyg a103s e
A103211(q L1
Ke g
o M O emamo e || s
I Aem
7 Kepy _
¢ fem | N I
SSIN L1owan ponuoy 10 Jossdd0xd £q
ey ey PanSSI SSAAPPY

414 Chapter 12 Caches

The set of cache lines pointed to by the set index are set associative. A data or code
block from main memory can be allocated to any of the four ways in a set without affecting
program behavior; in other words the storing of data in cache lines within a set does not
affect program execution. Two sequential blocks from main memory can be stored as cache
lines in the same way or two different ways. The important thing to note is that the data or
code blocks from a specific location in main memory can be stored in any cache line that
is a member of a set. The placement of values within a set is exclusive to prevent the same
code or data block from simultaneously occupying two cache lines in a set.

The mapping of main memory to a cache changes in a four-way set associative cache.
Figure 12.8 shows the differences. Any single location in main memory now maps to four
different locations in the cache. Although Figures 12.5 and 12.8 both illustrate 4 KB caches,
here are some differences worth noting.

The bit field for the tag is now two bits larger, and the set index bit field is two bits
smaller. This means four million main memory addresses now map to one set of four cache
lines, instead of one million addresses mapping to one location.

The size of the area of main memory that maps to cache is now 1 KB instead of 4 KB.
This means that the likelihood of mapping cache line data blocks to the same set is now four
times higher. This is offset by the fact that a cache line is one fourth less likely to be evicted.

If the example code shown in Figure 12.6 were run in the four-way set associative cache
shown in Figure 12.8, the incidence of thrashing would quickly settle down as routine A,
routine B, and the data array would establish unique places in the four available locations
in a set. This assumes that the size of each routine and the data are less than the new smaller
1 KB area that maps from main memory.

12.2.4.1 Increasing Set Associativity

As the associativity of a cache controller goes up, the probability of thrashing goes down.
The ideal goal would be to maximize the set associativity of a cache by designing it so
any main memory location maps to any cache line. A cache that does this is known as a
fully associative cache. However, as the associativity increases, so does the complexity of
the hardware that supports it. One method used by hardware designers to increase the set
associativity of a cache includes a content addressable memory (CAM).

A CAM uses a set of comparators to compare the input tag address with a cache-tag
stored in each valid cache line. A CAM works in the opposite way a RAM works. Where a
RAM produces data when given an address value, a CAM produces an address if a given data
value exists in the memory. Using a CAM allows many more cache-tags to be compared
simultaneously, thereby increasing the number of cache lines that can be included in a set.

Using a CAM to locate cache-tags is the design choice ARM made in their ARM920T
and ARM940T processor cores. The caches in the ARM920T and ARM940T are 64-way set
associative. Figure 12.9 shows a block diagram of an ARM940T cache. The cache controller
uses the address tag as the input to the CAM and the output selects the way containing the
valid cache line.

12.2 Cache Architecture 415

0x00000C00

0x00000800

0x00000400

1 KB

0x00000000

4G main memory

OXFFFFFFFF ?]

0x00000824

0x00000424

0x00000224

S

Way 3

cache-tag [v]d[word3] word2 [wordI [word0

Way 2

cache-tag [v]d[word3] word2 [wordl [word0

Way 1

cache-tag [v]d|word3] word2 |wordl | word0

Way 0

cache-tag [v]d[word3] word2JwordI] word0

0x3FF

0x224 <—

0x000

0x3FF

0x224 <

0x000

Ox3FF

0x224 ——

0x000

Ox3FF

0x224 —<—

0x000

S S e

o XXXXX | 2 2 4

tag set index | data index

31 10 9 43

Address issued by processor core

0

Figure 12.8 Main memory mapping to a four-way set associative cache.

416 Chapter 12 Caches

Address issued Cache Cache
by processor core controller memory
31) Miss
]

Tag

Set
index

Data
index

e}

[SSIEN

————— 64 ways

Address/data
bus
CAM Cam3 | Cache-tag Data
set AN Cam? | Cache-tag | v |d Data firf:sCth
SelffCt N Caml | Cache-tag | v |d Data wa P
logic Cam0 | Cache-tag |v |d Data Y

L »

Figure 12.9 ARM940T—4 KB 64-way set associative D-cache using a CAM.

The tag portion of the requested address is used as an input to the four CAMs that
simultaneously compare the input tag with all cache-tags stored in the 64 ways. If there is
a match, cache data is provided by the cache memory. If no match occurs, a miss signal is
generated by the memory controller.

The controller enables one of four CAMs using the set index bits. The indexed CAM
then selects a cache line in cache memory and the data index portion of the core address
selects the requested word, halfword, or byte within the cache line.

12.2.5 WRITE BUFFERS

A write buffer is a very small, fast FIFO memory buffer that temporarily holds data that the
processor would normally write to main memory. In a system without a write buffer, the
processor writes directly to main memory. In a system with a write buffer, data is written at
high speed to the FIFO and then emptied to slower main memory. The write buffer reduces
the processor time taken to write small blocks of sequential data to main memory. The
FIFO memory of the write buffer is at the same level in the memory hierarchy as the L1
cache and is shown in Figure 12.1.

12.2 Cache Architecture 417

The efficiency of the write buffer depends on the ratio of main memory writes to the
number of instructions executed. Over a given time interval, if the number of writes to
main memory is low or sufficiently spaced between other processing instructions, the write
buffer will rarely fill. If the write buffer does not fill, the running program continues
to execute out of cache memory using registers for processing, cache memory for reads
and writes, and the write buffer for holding evicted cache lines while they drain to main
memory.

A write buffer also improves cache performance; the improvement occurs during cache
line evictions. If the cache controller evicts a dirty cache line, it writes the cache line to the
write buffer instead of main memory. Thus the new cache line data will be available sooner,
and the processor can continue operating from cache memory.

Data written to the write buffer is not available for reading until it has exited the write
buffer to main memory. The same holds true for an evicted cache line: it too cannot be
read while it is in the write buffer. This is one of the reasons that the FIFO depth of a write
buffer is usually quite small, only a few cache lines deep.

Some write buffers are not strictly FIFO buffers. The ARM10 family, for example,
supports coalescing—the merging of write operations into a single cache line. The write
buffer will merge the new value into an existing cache line in the write buffer if they
represent the same data block in main memory. Coalescing is also known as write merging,
write collapsing, or write combining.

12.2.6 MEASURING CACHE EFFICIENCY

There are two terms used to characterize the cache efficiency of a program: the cache
hit rate and the cache miss rate. The hit rate is the number of cache hits divided by the
total number of memory requests over a given time interval. The value is expressed as
a percentage:

. cache hits
hit rate = x 100

memory requests

The miss rate is similar in form: the total cache misses divided by the total number of
memory requests expressed as a percentage over a time interval. Note that the miss rate also
equals 100 minus the hit rate.

The hit rate and miss rate can measure reads, writes, or both, which means that the
terms can be used to describe performance information in several ways. For example,
there is a hit rate for reads, a hit rate for writes, and other measures of hit and miss
rates.

Two other terms used in cache performance measurement are the hit time—the time it
takes to access a memory location in the cache and the miss penalty—the time it takes to
load a cache line from main memory into cache.

418 Chapter 12 Caches

12.3 CACHE PoLicy

There are three policies that determine the operation of a cache: the write policy, the
replacement policy, and the allocation policy. The cache write policy determines where
data is stored during processor write operations. The replacement policy selects the cache
line in a set that is used for the next line fill during a cache miss. The allocation policy
determines when the cache controller allocates a cache line.

12.3.1 WRITE POLICY—WRITEBACK OR WRITETHROUGH

When the processor core writes to memory, the cache controller has two alternatives for
its write policy. The controller can write to both the cache and main memory, updating
the values in both locations; this approach is known as writethrough. Alternatively, the
cache controller can write to cache memory and not update main memory, this is known
as writeback or copyback.

12.3.1.1 Writethrough

When the cache controller uses a writethrough policy, it writes to both cache and main
memory when there is a cache hit on write, ensuring that the cache and main memory
stay coherent at all times. Under this policy, the cache controller performs a write to
main memory for each write to cache memory. Because of the write to main memory,
a writethrough policy is slower than a writeback policy.

12.3.1.2 Writeback

When a cache controller uses a writeback policy, it writes to valid cache data memory
and not to main memory. Consequently, valid cache lines and main memory may contain
different data. The cache line holds the most recent data, and main memory contains older
data, which has not been updated.

Caches configured as writeback caches must use one or more of the dirty bits in the
cache line status information block. When a cache controller in writeback writes a value to
cache memory, it sets the dirty bit true. If the core accesses the cache line at a later time, it
knows by the state of the dirty bit that the cache line contains data not in main memory. If
the cache controller evicts a dirty cache line, it is automatically written out to main memory.
The controller does this to prevent the loss of vital information held in cache memory and
not in main memory.

One performance advantage a writeback cache has over a writethrough cache is in the
frequent use of temporary local variables by a subroutine. These variables are transient in
nature and never really need to be written to main memory. An example of one of these

12.3 Cache Policy 419

transient variables is a local variable that overflows onto a cached stack because there are
not enough registers in the register file to hold the variable.

12.3.2 CACHE LINE REPLACEMENT POLICIES

EXAMPLE

12.1

On a cache miss, the cache controller must select a cache line from the available set in
cache memory to store the new information from main memory. The cache line selected
for replacement is known as a victim. If the victim contains valid, dirty data, the controller
must write the dirty data from the cache memory to main memory before it copies new
data into the victim cache line. The process of selecting and replacing a victim cache line is
known as eviction.

The strategy implemented in a cache controller to select the next victim is called its
replacement policy. The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cacheline replacement. To summarize
the overall process, the set index selects the set of cache lines available in the ways, and the
replacement policy selects the specific cache line from the set to replace.

ARM cached cores support two replacement policies, either pseudorandom or
round-robin.

®m Round-robin or cyclic replacement simply selects the next cache line in a set to replace.
The selection algorithm uses a sequential, incrementing victim counter that increments
each time the cache controller allocates a cache line. When the victim counter reaches
a maximum value, it is reset to a defined base value.

®m Pseudorandom replacement randomly selects the next cache line in a set to replace. The
selection algorithm uses a nonsequential incrementing victim counter. In a pseudoran-
dom replacement algorithm the controller increments the victim counter by randomly
selecting an increment value and adding this value to the victim counter. When the
victim counter reaches a maximum value, it is reset to a defined base value.

Most ARM cores support both policies (see Table 12.1 for a comprehensive list of ARM
cores and the policies they support). The round-robin replacement policy has greater pre-
dictability, which is desirable in an embedded system. However, a round-robin replacement
policy is subject to large changes in performance given small changes in memory access. To
show this change in performance, we provide Example 12.1.

This example determines the time it takes to execute a software routine using the round-
robin and random replacement policies. The test routine cache RRtest collects timings
using the clock function available in the C library header time.h. First, it enables a round
robin policy and runs a timing test, and then enables the random policy and runs the
same test.

The test routine readSet is written specifically for an ARM940T and intentionally shows
a worst-case abrupt change in cache behavior using a round-robin replacement policy.

420 Chapter 12 Caches

Table 12.1 ARM cached core policies.

Core Write policy Replacement policy Allocation policy
ARM720T writethrough random read-miss
ARM740T writethrough random read-miss
ARM920T writethrough, writeback random, round-robin read-miss
ARM940T writethrough, writeback random read-miss
ARMO926E]S writethrough, writeback random, round-robin read-miss
ARMOY46E writethrough, writeback random, round-robin read-miss
ARMI10202E writethrough, writeback random, round-robin read-miss
ARM1026E]S writethrough, writeback random, round-robin read-miss

Intel StrongARM writeback round-robin read-miss

Intel XScale writethrough, writeback round-robin read-miss, write-miss

#include <stdio.h>
#include <time.h>

void cache RRtest(int times,int numset)

{

}

clock_t count;

printf("Round Robin test size = %d\r\n", numset);

enableRoundRobin();
cleanFlushCache();
count = clock();

readSet (times,numset) ;
count = clock() - count;

printf("Round Robin enabled = %.2f seconds\r\n",
(float)count/CLOCKS PER SEC);

enableRandom() ;
cleanFlushCache();
count = clock();
readSet (times, numset);
count = clock() - count;

printf("Random enabled = %.2f seconds\r\n\r\n",
(float)count/CLOCKS PER_SEC);

int readSet(int times, int numset)

{

12.3 Cache Policy 421

int setcount, value;
volatile int *newstart;
volatile int *start = (int *)0x20000;

__asm
{
timesloop:
MOV newstart, start
MOV setcount, numset
setloop:
LDR value, [newstart,#0] ;
ADD newstart,newstart,#0x40;

SUBS setcount, setcount, #1;
BNE setloop;
SUBS times, times, #1;
BNE timesloop;
}
return value;

}

We wrote the readSet routine to fill a single set in the cache. There are two arguments
to the function. The first, times, is the number of times to run the test loop; this value
increases the time it takes to run the test. The second, numset, is the number of set values
to read; this value determines the number of cache lines the routine loads into the same
set. Filling the set with values is done in a loop using an LDR instruction that reads a value
from a memory location and then increments the address by 16 words (64 bytes) in each
pass through the loop. Setting the value of numset to 64 will fill all the available cache lines
in a set in an ARM940T. There are 16 words in a way and 64 cache lines per set in the
ARM940T.

Here are two calls to the round-robin test using two set sizes. The first reads and fills a
set with 64 entries; the second attempts to fill the set with 65 entries.

unsigned int times = 0x10000;
unsigned int numset = 64;

cache RRtest(times, numset);
numset = 65;
cache RRtest(times, numset);

The console output of the two tests follows. The tests were run on an ARM940T core
module simulated using the ARM ADS1.2 ARMulator with a core clock speed of 50 MHz
and a memory read access time of 100 ns nonsequential and 50 ns sequential. The thing to
notice is the change in timing for the round-robin test reading 65 set values.

422 Chapter 12 Caches

Round Robin test size = 64

Round Robin enabled = 0.51 seconds
Random enabled = 0.51 seconds
Round Robin test size = 65

Round Robin enabled = 2.56 seconds
Random enabled = 0.58 seconds

This is an extreme example, but it does shows a difference between using a round-robin
policy and a random replacement policy.

Another common replacement policy is least recently used (LRU). This policy keeps
track of cache line use and selects the cache line that has been unused for the longest time
as the next victim.

ARM’s cached cores do not support a least recently used replacement policy, although
ARM’s semiconductor partners have taken noncached ARM cores and added their own
cache to the chips they produce. So there are ARM-based products that use an LRU
replacement policy.

12.3.3 ALLOCATION PoOLICY ON A CACHE MISs

There are two strategies ARM caches may use to allocate a cache line after a the occurrence
of a cache miss. The first strategy is known as read-allocate, and the second strategy is known
as read-write-allocate.

A read allocate on cache miss policy allocates a cache line only during a read from main
memory. If the victim cache line contains valid data, then it is written to main memory
before the cache line is filled with new data.

Under this strategy, a write of new data to memory does not update the contents of the
cache memory unless a cache line was allocated on a previous read from main memory.
If the cache line contains valid data, then a write updates the cache and may update main
memory if the cache write policy is writethrough. If the data is not in cache, the controller
writes to main memory only.

A read-write allocate on cache miss policy allocates a cache line for either a read or write
to memory. Any load or store operation made to main memory, which is not in cache
memory, allocates a cache line. On memory reads the controller uses a read-allocate policy.

On a write, the controller also allocates a cache line. If the victim cache line contains
valid data, then it is first written back to main memory before the cache controller fills the
victim cache line with new data from main memory. If the cache line is not valid, it simply
does a cache line fill. After the cache line is filled from main memory, the controller writes
the data to the corresponding data location within the cache line. The cached core also
updates main memory if it is a writethrough cache.

The ARM7, ARMY, and ARM10 cores use a read-allocate on miss policy; the Intel XScale
supports both read-allocate and write-allocate on miss. Table 12.1 provides a listing of the
policies supported by each core.

12.5 Flushing and Cleaning Cache Memory 423

124 COPROCESSOR 15 AND CACHES

There are several coprocessor 15 registers used to specifically configure and control ARM
cached cores. Table 12.2 lists the coprocessor 15 registers that control cache configuration.
Primary CP15 registers ¢7 and c9 control the setup and operation of cache. Secondary
CP15:c7 registers are write only and clean and flush cache. The CP15:¢9 register defines
the victim pointer base address, which determines the number of lines of code or data
that are locked in cache. We discuss these commands in more detail in the sections
that follow. To review the general use of coprocessor 15 instructions and syntax, see
Section 3.5.2.

There are other CP15 registers that affect cache operation; the definition of these registers
is core dependent. These other registers are explained in Chapter 13 in Sections 13.2.3 and
13.2.4 on initializing the MPU, and in Chapter 14 in Section 14.3.6 on initializing the MMU.

In the next several sections we use the CP15 registers listed in Table 12.2 to provide
example routines to clean and flush caches, and to lock code or data in cache. The control
system usually calls these routines as part of its memory management activities.

12.5 FLUSHING AND CLEANING CACHE MEMORY

Table 12.2

ARM uses the terms flush and clean to describe two basic operations performed on a
cache.

To “flush a cache” is to clear it of any stored data. Flushing simply clears the valid bit in
the affected cache line. All or just portions of a cache may need flushing to support changes
in memory configuration. The term invalidate is sometimes used in place of the term flush.
However, if some portion of the D-cache is configured to use a writeback policy, the data
cache may also need cleaning.

To “clean a cache” is to force a write of dirty cache lines from the cache out to main
memory and clear the dirty bits in the cache line. Cleaning a cache reestablishes coherence
between cached memory and main memory, and only applies to D-caches using a writeback
policy.

Coprocessor 15 registers that configure and control cache operation.

Function Primary register ~ Secondary registers Opcode 2
Clean and flush cache c7 5, ¢6, ¢7, c10, c13,c14 0,1,2
Drain write buffer c7 cl0 4

Cache lockdown c9 c0 0,1
Round-robin replacement ¢15 0 0

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.

Advanced Learners List

COURSE TITLE -]Microcontrollers

COURSE CODE -BCS402

S.NO USN NAME Signature
1 1KG22CS002 |A PAVITHRA A Pofatina .
2 1KG22CS003 |ABHISHEK S 25 Aokl
3 1KG22CS004 [AKSHAYA K T Dl ol
4 1KG22CS006 |AMISHA V A o\
5 1KG22CS010 |ANJANA R C @M‘w i
6 1KG22CS022 |C GOWTHAM C Spul—
7 1KG22CS033 |DEEKSHA D SHENOY Qeekths D SewoY-
8 1KG22CS040 |GAGANA SHREE S N
9 1KG22CS045 |GORTHI YASWANTH 1. AR~
|10 1KG22CS055 [KAVANA S M ey
il 11 1KG22CS056 |KAVYA S P
FAC NCHARGE HOD /

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.
Advanced Learners List

YEAR / SEMESTER - IV - 'A’

COURSE TITLE -JMicrocontrollers

COURSE CODE -BCS402

S.NO USN NAME _Signature

1 1KG22CS002 |A PAVITHRA A PayCiboa .

2 1KG22CS003 |ABHISHEK S J6 Aol

3 1KG22CS006 |AMISHA V Ao N

4 1KG22CS033 [DEEKSHA D SHENOY Neebioho - D+ Lrangt-

5 1KG22CS039 |G UHA G Dha

6 1KG22CS040 |GAGANA SHREE S (aold— /)
FACULTY INSAARGE HOD _—

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.

Attendance For Remedial Class

YEAR /SEMESTER IV-'A
COURSE TITLE Microcontrollers
COURSE CODE BCS402
ACADEMIC YEAR 2023-2024
S.NO USN NAME Students Signature
L]
I | 1KG22CS001 (A G VISHNU M

[

1KG22CS008

ANANTHANENI KRISHNA
SAl

'

_qot

3| 1KG22CS012 |B M DARSHAN @
4 | 1KG22CS021 [BYNI PURUSHOTHAM Yorthadhaum)
5 | 1KG22CS027 |CHARAN KUMAR P K QI pM—
6 | 1KG22CS029 |D MAHESH DD
7 | 1KG22CS031 |DANDA SHALINI ot
8 | 1KG22CS034 |DISHA S e -
9 | 1KG22CS035 |DIYA AJITH KASABEKAR @/
10 | 1KG22CS036 |E. MASHAN KUMAR cmily
11| 1KG22CS047 [HARSHA C V Han%ﬁi
12| IKG22CS048 [HARSHITHA C K B ato-.
13 | IKG22CS051 [JAJAPPAGARI SAI SREE Serms—
14 | 1KG22CS052 |JAMPULA ABHILASH < Shh e —
15 | 1KG22CS053 [K GAYATHRI ool
16 | 1KG22CS059 |KOUSIK N Jeo<de -
17 | IKG22CS060 |L R DHAYATRI Phayelii
v
28\
SIGNATURE E FACULTY HOD

ter S
rtment of Computer *
Deﬁiﬁ, School of Engineering

.

pS_- g

Bangalore-560
an

clence Engineering
& Management

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.

Attendance For Remedial Class

YEAR / SEMESTER IV-'A

COURSE TITLE Microcontrollers

COURSE CODE BCS402

ACADEMIC YEAR 2023-2024

S.NO USN NAME Students Signature
|| 1KG22CS001 |A G VISHNU w

2 | 1KG22CS008

ANANTHANENI KRISHNA
SAI

Sl

3 | 1KG22CS012

B M DARSHAN

4 | IKG22CS021

BYNI PURUSHOTHAM

5 | 1KG22CS027

CHARAN KUMAR P K

6 | 1KG22CS029 D MAHESH Rl
7 | 1KG22CS031 [DANDA SHALINI Shod) i
8 | 1KG22CS034 [DISHA S K22

9 | IKG22CS035

DIYA AJITH KASABEKAR

10 | 1KG22CS036 |E. MABHAN KUMAR C.nVy

11 | 1KG22CS048 [HARSHITHA C K Y =t

12 | 1KG22CS051 |JAJAPPAGARI SAI SREE Pesme—

13 | IKG22CS052 [JAMPULA ABHILASH —~_ Oeet—

14 | IKG22CS053 |K GAYATHRI S lava e

15 | 1IKG22CS059 |KOUSIK N loard,

16 | 1KG22CS060 |L R DHAYATRI Phayals
s

)

/“—’/

SIGNATURIYOF THE

FACULTY

Department
K.S Schoo

Hoﬁ‘

of Com
| of Ennmf’ef'nﬁ

E- 1galore-

ring
Scmenco Enginee
o S o & Management

109 st

'_..

K.S SCHOOL OF ENGINEERING AND MANAGEMENT
DEPARTMENT OF COMPUTER SCIENCE & ENGG.

IV A -Assignment Marks Sheet
YEAR/SEMESTER VA"
COURSE TITLE Microcontrollers
COURSE CODE BCS402
ACADEMIC YEAR 2023-2024
Assignment 1 | Assignment 2 Total Total St;ldent
SNO| USN NAME @5) (25) iy [e
10 10 20 10)
1| 1KG22CS001 |A G VISHNU M
2 [IKG22CS002 [A PAVITHRA 10 |0 J0 |0 A Yay ,'}&;m :
3 | 1KG22CS003 [ABHISHEK S 1D 10 20 (O ALk
4 | IKG22CS004 |AKSHAYA K |0 D pR [D W}:@(@L
omons BERVEETT T 00 | 15 | 20 | 1o A
6 | IKG22CS006 [AMISHA V 1O 10 S0 [e) Bwa V
7| 1KG22CS007 |ANAGHA S D [O RV, 10 |
s | 1ka22cs00s ’;‘EANTHANENI S [0 |10 Nl 10 —p
9 | 1KG22CS009 |ANCHAL R S SINGH o 10 ol 0 [O [jell
10 | IKG22CS010 [ANJANA R C 10) 20 10 | 48
11 | 1KG22CS011 |[AVINASH NAYAK M \D (O Q0 |D ?3_\/! poM—+
_ 12 | IKG22CS012 [B M DARSHAN 10 |0 0 (0 |wrBuat
13 | 1IKG22CS013 |B N RUSHITHA o, |10 S0 O Pppcs—
14 | 1IKG22CS014 |B USHASREE 1o) L0 |0 B Uadsl
15 | 1KG22CS015 [B V DEEKSHA JAIN | ® [O a0 (D [Rees
16 | 1KG22CS016 [BHANU PRIYA K (D 10 - a0 I1D E&ﬂ%”
17 | 1KG22CS017 |BHARATH R N 10 08 |18 09 @,ﬁ/ﬁ
18 | IKG22CS018 [BHAVYA D) [0 QO 0 |%w
19 | 1KG22CS019 [BHEEMANNA 1) |0 ol O [0 Rl
20 | 1KG22CS020 |BOURISETTI CHAITANYA 10 10 N 10 W
21 | 1KG22CS021 |BYNI PURUSHOTHAM [O) D 20 i @%}%’4/}
22 | 1KG22CS022 [C GOWTHAM 1D i0 A0 I
23 | 1KG22CS023 [C R ANAGHA |0 |0 o0 o | Ary
24 | IKG22CS024 [CHAITHANYA C) (Nl &@ | O o=
25 | 1KG22CS025 [CHAITRA C | O (0 96 1D (,%/
26 | 1KG22CS026 [CHALLA PAVAN KUMAR |0 10 20 0 |C e
27 | 1KG22CS027 [CHARAN KUMAR P K 0 1O 20 [O G+
28 | 1KG22CS028 [CHARAN TR 10 LD)0 D |drose2

Assignment 1

Assignment 2

Total

SIGN»\TURW&TY
i

SNO| USN NAME @9 (2'% T;tg Reducf?,(zo) S?;::::::e
29 | 1KG22CS029 |D MAHESH (O 10 J0 b |
30 | 1KG22CS030 |D SHREYAS 10 i, ®0 10 | Shoud
31 | 1KG22CS031 [DANDA SHALINI 10 - (O Q0 (O 3 wi:\,,‘
3 | 1KG22cs032 [ASARI YASASY o |0 d O 10 x
33 | 1KG22CS033 [DEEKSHA D SHENOY (D (O o0 | D W
34 | 1KG22CS034 |DISHA S [0 10 0 (O e
35 | 1KG22CS035 |DIYA AJITH KASABEKAR [O . |O 20 /O @/
36 | 1KG22CS036 |E. MASHAN KUMAR 10 |0 20 0 | £k,
37 | 1KG22CS037 |ENTURI LOKESH 10 |0 ol0 |0 £ oty |
38 | 1KG22CS038 |G SHARATH RAJ 10. |0 Q0 [0 SafF—
39 | 1KG22CS039 |G UHA 10 [0 JO O |Guide
40 | 1KG22CS040 [GAGANA SHREE 8 {0 10 0 1D |Gogee=
41 | IKG22CS041 |GANASHREE C N (D |0 D |0 [ooroEny
42 | 1KG22CS042 [GOLLA KAVYA |10 1y 20 D | Gi-Kewss
43 | 1KG22CS043 |GOLLA KUSUMA (0 10 30 (0 Gl
4| IKG2205044 | v KuwaR fo | 10 | 20 | 10 lGpud
45 | 1IKG22CS045 [GORTHI YASWANTH 10 o) JO 10 C,Ttd;%_——-
46 | 1KG22CS046 |HARISH R A 10 (O no (0 | Mt R4
47 | 1KG22CS047 [HARSHA C V T 10 20 4D Hastha
48 | 1KG22CS048 [HARSHITHA CK fb (D Vi, [O |p-—Hal
49 | 1KG22CS049 [HEMANTH R [0 |0 20 10 @*M/‘
50 | 1KG22CS050 [HRISHIKESH B S 1O |0 Q0 (o JLNMTM‘&-
51 | 1KG22CS051 [JAJAPPAGARI SAI SREE (O |O 0 [O (_68@9-—
52 | 1KG22CS052 [JAMPULA ABHILASH [0 (O 50 0 |Isats
53 | 1KG22CS053 [K GAYATHRI D [D 20 (O DYQ&;QB‘;
54 | 1KG22CS054 [K PRAMOD KUMAR 10 [0 20 10 TRasd
55 | 1KG22CS055 |[KAVANA S M [O /D a0 |0 M
56 | TKG22CS056 [KAVYA S 1O - 10 20 10 ..l/ae;{-—
57 | 1IKG22CS057 [KEERTHANA B tO |0 &O [0 W A
58 | 1KG22CS058 [KOLLA BHAVANA [0 10 1), 10 |93..0,
59 | 1KG22CS059 [KOUSIK N 10) Q0 (0 ,lr;_{éw&g~
60 | 1KG22CS060 |L R DHAYATRI }O (O &0 e, B[st
61 | 1KG22CS061 [LIKHITHA P V [O |0 20 [0 U lﬂ«;ﬁfk
62 | 1KG22CS062 [LIKITHA R \ |0 |0 <0 Lo St~
63 | 1KG23CS400 [GOWTHAM T M (O
64 | 1KG23CS401 |IQRAA o,

" 65 | 1KG23CS402 |MUDDASSIR (O

66 1Ka2(p62 3AITA-M \0

K.S SCHOOL OF ENGINEERING AND MANAGEMENT

DEPARTMENT OF COMPUTER SCIENCE & ENGG.

YEAR / SEMESTER V- A"

COURSE TITLE Microcontrollers

COURSE CODE BCS402

ACADEMIC YEAR 2023-2024

Scale TA
sNo| usy NAME | 102 | 1o g Dol s | ass | g | | ek | Soene
L) | o5 (50)

1 | 1KG22CS001 |A G VISHNU o | 4 | 16| 10| 5| s | s | s | 15w]| 2 \A’}a,
2 | 1KG22CS002 |A PAVITHRA 27 | 30 | aB | 20 | 158 10| 10| 10| 25| 25 | 50 J‘M’b‘ '
3 | 1KG22CS003 |[ABHISHEK S 20 | 28 | 25 | 20 [15 [10 | 10 | 10 [25 [24 | 49 Q& A
4 | 1KG22CS004 |AKSHAYA K 28 | 23 | 23 | 26 | 3 | 10| 10 | 10| 23 | 23 | 46 m(%ewi
5 | 1KG22CS005 %é%ggggﬁg ASAI 20 | 10 | 13| 12 | 9 | 10| 10| 10| 19| 25 | 42 |A.Tuokkk
6 1KG22CS006 |AMISHA V 29 29 AB 29 15 10 10 10 25 25 50 Wbo N
7 1KG22CS007 |[ANAGHA S 15 8 18 17 9 10 10 10 19 23 42 W"
8 1KG22CS008 QZANTHANENI KRISHNA 13 17 AB 15 8 10 10 10 18 23 11] ; ‘a !A’)
9 | 1KG22CS009 |ANCHAL R S SINGH 2| o | 17| 2010101010 20]|2]|s W
10 | 1KG22CS010 |ANJANAR C |2 ap |2 | B |9 oo ||| 4| el
11 | 1KG22CS011 |AVINASH NAYAK M 2 [s [2 | 2 [20| 0] 0] 2]2]w6]| pipd—
12 | 1KG22CS012 |B M DARSHAN s | 7 |10 o 5 w005 |2a]s36|(Quox
13 | 1KG22¢S013 [B N RUSHITHA 5 | | s | 18| 9o [10|00]| 0| 2|4t

bar | 1az | 13 |(Bestet gﬁi ass | ass |AVE Iﬁ Lab |C®%¢| Student
SNO = INAMIE e | oo | co [? ?XG To | a0y | a0 ?1?; ASS | (25) 1;‘5’;*)‘1 Signature
(15) 25)

14 | 1KG22CS014 |B USHASREE o | 18 | 15 | 10| 10|10 0] 1w0]2]|2]4 yha.

15 | 1KG22CS015 |B V DEEKSHA JAIN w | 1| s | 15| s | 0] 0] 0] 18|25 |4 E iz

16 | 1KG22CS016 [BHANU PRIYA K s | 18 | 22 | 23 | 2|0 | 10| 0| 2]2]4% pdo—

17 | 1KG22CS017 |BHARATH R N s 1 5 | 6| 2|6 |10] 8|9 |15]|2]38 d@j‘:@/

18 | 1KG22CS018 |BHAVYA D 7 | 10 | aB | 18| o | 10| 0|0 1W]| 2|2

19 | 1KG22CS019 [BHEEMANNA o1 | 18 | aB | 20 | 10 | 10 | 10 | 10 | 20 | 23 | 43 W

20 | 1KG22C8020 [BOURISETTI CHAITANYA| 22 | 21 | AB | 22 | 1 | 10) 10 | 10 21 | 24 | 45 M

21 | 1KG22CS021 [BYNI PURUSHOTHAM 5 5 | aB | s 3 | 10| 10| 10| 135 | 23| 36 Iﬁ”?%‘”

22 | 1KG22€8022 |c GOWTHAM o | 15 | 10 | 23| 2| 10| 0] 0] 22|24 %Eiﬂ&-t

23 | 1IKG22CS023 [C R ANAGHA s | as | 16 | 17| o | 0] 10| 0] |22]4 @3

24 | 1KG22CS024 [CHAITHANYA C w |l ol 2] | 7 | 10|10] 10|17]| 19|36 =

25 | 1KG22CS025 |[CHAITRA C 8 | 15 | aB| 17| 9 [0] 0] 10| 19 |2 |42 (,yr’/

26 | 1KG22CS026 |CHALLA PAVANKUMAR | 16 | 7 | 11 | 14 | 7 | 10 | 10§ 10 4 17 23 | 0 |CHxaea

27 | 1KG22€S027 [CHARAN KUMAR P K 5 | 8 | 18| 16| 8 | 10| 0| w0 | 18]25) 4 %

28 | 1KG22CS028 [CHARAN TR 21 15 20 21 1 10 10 10 21 24 45 W

29 | 1KG22€S029 |D MAHESH 3 | 10 | 12| 3] 7 | w0 |10 0] 17| 2| 4

30 | 1KG22CS030 |D SHREYAS ot | 235 | aB | 24 | 12 | 10 | 10 | 10 | 22 [24 | 46

Scale 1A
s | o SR A o e o o Bl Bl R R b et

(15) 10 1 (25 (50)
31 | 1KG22CS031 [DANDA SHALINI 8 | [|| 9 10| 10|10 |1 2|4 i
32 | 1KG22CS032 gﬁ;%il YASASWI 18 [AB [22 | 20 [10 | 10 | 10 | 10 | 20 [24 | a4 @9'
33 | 1KG22CS033 |DEEKSHA D SHENOY 20 | 20 | 4B | 29| 15 | 10 | 10| 10| 25 [25 | 50 [Qqelcties
34 | 1IKG22CS034 |DISHA S | 6 [10 | | 6 10|10 10| 16|20 [4a0 |
35 | 1KG22CS035 [DIYA AJITHKASABEKAR| 13 [9 | 22 | 18 | 9 | 10 | 10 | 10 | 19 | 23 | 4 W
36 | 1KG22CS036 |E. MASHAN KUMAR s Joju s s || fw]|s|2]|s|ou
37 | 1KG22CS037 |[ENTURI LOKESH 16 | 11 [15 | 16 | 8 | 10 | 10 |10 | 18 | 22 |4 |g l-;%_
38 | 1IKG22CS038 (G SHARATH RAJ 22 9 AB 16 8 10 10 10 18 24 42 %@
39 | 1IKG22CS039 |G UHA 24 25 | AB | 25 13 10 10 10 23 22 5 QW
40 | 1KG22CS040 [GAGANA SHREE S 26 | 25 | 4B | 26 | 13| 10 | 10 |10]| 23 | 2|47 | o,
41 | 1KG22CS041 |GANASHREE C N 2 | 16 | 4B | 20 | 10 [10 [10 | 10 | 20 | 24 [44 [rosadep
42 | IKG22CS042 [GOLLA KAVYA 19 120 | 19)20 | 10| 10|10 [10|20 |24 |4 |(Kee
43 | 1IKG22CS043 | GOLLA KUSUMA 23 1 15 | 010)10 |10]2|23]|48|3 Kt
44 | 1KG22CS044 Sﬁg&%&ﬁ UMAR 16 | AB | 18 | 17 | 9 | 10 | 10 | 10 | 19 | 24 | 43 b nMd'
45 | 1KG22CS045 [GORTHI YASWANTH 25 | 22 [aB | 24 | 12 | 10 [10 | 10 | 22 [20 | 46 q Yl |
46 | 1KG22CS046 [HARISHR A 21 [21 | AB | 20 | 1 | 10 | 10 [10 [21 | 23 [44 [LlerijhP
47 | 1IKG22CS047 [HARSHA CV AB 5 7 6 3 10 10 10 13 22 35 | _Hok.ﬂs@-_
48 | 1IKG22CS048 (HARSHITHA CK 10 6 13 12 6 10 10 10 16 21 37 _l(e_:%@-—.]

a1 | 1a2 | 1a3 [Bestof Siii ass | ass [AVS If Lab |99 Student
ShO USN Ll 6o | 6o | @0 2 ﬁ Gl o | a0y | (0 ?1?3 ASS | (25) 1;;’;;1 Signature
(15) (25)

49 | 1KG22CS049 [HEMANTH R 17 | 11 5 14 7 10 | 10|10 17|24 | @ @4;%’1

50 | 1KG22CS050 [HRISHIKESH B S 15 | aB | 17 | 16 8 10 | 10 | 10 | 18] 22 | 40 _P&dﬁm

51 | 1KG22CS051 [JAJAPPAGARI SAI SREE 12 6 10 | 1 6 10 | 10 | 10 | 16 | 20 | 37 (&mrﬂ

52 | 1KG22CS052 [JAMPULA ABHILASH 11 2 5 8 5 10 | 10 | 10 | 15 | 20 | 35 %&»A

53 | 1KG22CS053 [K GAYATHRI 7 4 | aB | 6 3 10 | 10 | 10 | 13 | 22| 35 W

54 | 1KG22CS054 [K PRAMOD KUMAR 21 | 11} 12 | ©7 9 10 | 10 | 10| 19| 23 | 42 'W _

55 | 1IKG22CS055 [KAVANA S M 26 | 24 | aB | 25 | 13 | 10 | 10 | 10 | 23 | 23 | 46 W

56 | 1IKG22CS056 [KAVYA S 26 | 21 | aB | 24 | 12 | 10 | 10 | 10 | 22 | 24 | 46 ‘k% h

57 | 1IKG22CS057 [KEERTHANA B 24 24 | AB | 24 12 10 10 10 22 24 46 Wp

58 | 1KG22CS058 [KOLLA BHAVANA 235 | 19 | aB | 21 | 1 [10 | 10 | 10 | 21 | 24 | 45 (E;@(

59 | 1KG22CS059 [KOUSIK N 14 8 9 12 6 0 | 10 [10 | 16 | 23 | 39 | fud

60 | 1KG22CS060 |L R DHAYATRI 12 4 17 | 15 8 0 [10 | 10| 18 | 20 | 2 [plyyal

61 |1KG22CS061 |[LIKHITHA PV 17 | 12 | 17 | 17 9 10 | 10| 10] 19] 23| 2 [} M‘b&_’_

62 | 1KG22CS062 [LIKITHA R 155 | 12 | 15 | 15 8 10 | 10 | 10| 18| 22| 40 | A4~

63 | 1KG23CS400 [Gowtham T M 16 | 15 9 16 8 10 8 9 17 | 22 | 39 | G Thendsh

64 | 1KG23CS401 |Iqraa 19 | 12| aB | 16| 8 | 10] 0] 10|18 | 24 | 42 }AM_U WA

65 | 1KG23CS402 [Muddassir 16 | aB | 15 | 16 8 10 8 9 17 | 21 | 38 @H

, r-g D ~—
SIGNATU - Spmputer Science Enginecring

ol #1@Bgineering & Management

=) ere-SGMOQ 1

K.S.SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MICROCONTROLLERS LABORATORY
IV Semester Lab Internals B-Form - JUL - 2024

BATCH: - Al SUBJECT CODE: - BCS402 DATE: - 30/07/2024
SEMESTER: - IV SECTION: - A TIME: - 09.30 AM To 12.30 PM
S.No USN Name Signature Batch No Time

1 1KG22CS001 [A G VISHNU \ WA

2 1KG22CS002 [A PAVITHRA A i ot

3 1KG22CS003 |ABHISHEK S 04 . Po\s Vit

4 1KG22CS004 [AKSHAYA K ¥ Mgy alt

Lo~k
ALLURU VENKATASAT)

; HRG22C8005 Iry orHISHREDDY A- J%OH*?A’O

6 1KG22CS006 |AMISHA V Apwisho N

7 1KG22CS007 |ANAGHA S N .

8 1KG22CS008 |ANANTHANENI KRISHNA SAT oy

9 1KG22CS009 |ANCHAL R S SINGH %

10 1KG22CS010 [ANJANAR C AypiB

11 1KG22CS011 |AVINASH NAYAK M v haats—

12 1KG22CS012 |B M DARSHAN Sl

13 1KG22CS013 |B N RUSHITHA o \TIs

14 1KG22CS014 |B USHASREE 2 Uidas g
L5 1KG22CS015 |B V DEEKSHA JAIN bours, R
16 1KG22CS016 |BHANU PRIYA K REzwm—| BATCH =
17 1KG22CS017 |BHARATH R N o £~ Al =
18 1KG22CS018 |BHAVYA D & é
19 1KG22CS019 |[BHEEMANNA e — i
20 | 1KG22CS020 |BOURISETTI CHAITANYA s °
21 1KG22CS021 |BYNI PURUSHOTHAM N o)
22 1KG22CS022 |C GOWTHAM _
23 1KG22CS023 |C R ANAGHA A
24 | 1KG22CS024 [CHAITHANYA C A=
25 1KG22CS025 |CHAITRA C £ ok
26 1KG22CS026 |CHALLA PAVAN KUMAR C Javab
27 1KG22CS027 [CHARAN KUMAR P K @lnA__
28 1KG22CS028 |CHARAN TR rhaason X B
29 1KG22CS029 |D MAHESH (g2
30 1KG22CS030 |D SHREYAS G9upip—
31 1KG22CS031 |DANDA SHALINT Shal n i
32 1KG22CS032 [DASARI YASASWI NANDA D
33 1KG22CS033 |DEEKSHA D SHENOY ® eedilis -

Mrs. Slﬁiﬁ%ﬁ?ﬂ{lﬁsh
Faculty Signature i
1noefl
0& seien “;E:L?:s\ef\t
Depa™ oo\ﬁoi E‘“ﬁ‘m et
KS Seh B2 angd

K.S.SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109

BATCH: - A2

MICROCONTROLLERS LABORATORY
IV Semester Lab Internals B-Form - JUL - 2024

SUBJECT CODE: - BCS402

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DATE: - 29/07/2024

SEMESTER: - IV SECTION: - A TIME: - 09.30 AM To 12.30 PM
S.No USN Name Signature Batch No Time
1 1KG22CS034 |DISHA S Rt
2 1KG22CS035 |DIYA AJITH KASABEKAR 7z
3 1KG22CS036 |E MADAN KUMAR Y-
4 1KG22CS037 |[ENTURI LOKESH €.) oD
5 1KG22CS038 |G SHARATH RAJ N2
6 1KG22CS039 |G UHA Qe
7 1KG22CS040 |GAGANA SHREE S (ange=—
8 1KG22CS041 |GANASHREE C N bhoroshree.CM.
9 1KG22CS042 |GOLLA KAVYA G- Kaa
10 | 1KG22CS043 |GOLLA KUSUMA A MRS~
GONUGUNTLA PRASHANTH
11| 1KG22CS044 |/ o Q m
12 | 1KG22CS045 |GORTHI YASWANTH G V==
13 1KG22CS046 |HARISHR A {(M_Q_A E
14 1KG22CS047 |HARSHA CV Hawsha =
15 1KG22CS048 |HARSHITHA C K HeAho— o
16 | 1KG22CS049 |[HEMANTH R Do M= BATCH 3
17 | 1KG22CS050 |HRISHIKESH B S MmL A2 %
18 | 1KG22CS051 |[JAJAPPAGARI SAI SREE heree— =
19 | 1KG22CS052 |[JAMPULA ABHILASH — St o
20 | 1KG22CS053 |K GAYATHRI VD =
21 | 1KG22CS054 |K PRAMOD KUMAR Frawsd
22 | 1KG22CS055 |KAVANA S M Fouman—>
23 | 1KG22CS056 |[KAVYAS il
24 | 1KG22CS057 |KEERTHANA B KeThg~®
25 | 1KG22CS058 |KOLLA BHAVANA Ty
26 | 1KG22CS059 |KOUSIK N s -
27 1KG22CS060 |L R DHAYATRI Abon ot
28 | 1KG22CS061 |LIKHITHA PV LM M
29 | 1KG22CS062 |LIKITHA R j o
30 | 1KG22CS063 M SAIJA M Cosnte
31 | 1KG23CS400 |GOWTHAM TM Grmtlamt -+
32 | 1KG23CS401 [IQRAA IMAN KHAN QA<

33 1KG23CS402

MUDDASSIR AHMED I TORGUL

Mrs. na G

Faculty Signature

Mrs. uEil%ict%L:g]ure h

A0

Hoﬁgr écienr.e £ngineering

Co .
€rgineering &

B

. fanagement

LT

anqatam-‘éﬁm 08

g

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT:- 560 109
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Session 2024-2025 (EVEN Semester)
MICROCONTROLLERS LABORATORY
BATCH: - Al SUBJECT CODE: - BCS402 DATE: - 30/07/2024
SEMESTER: - IV SECTION: - A TIME: - 09.30 AM To 12.30 PM
Recotd Ob.s . e E)_(C Result | Viva
$.No USN vation O‘;; °offl ' wp | cution T;’(t)al O‘;B . Tg;al Signature
10 5 10 20 10 | 10 3
1 1KG22CS001 9 4 13 7 10 10 1 | 28 6 19 7ol
2 1K(G22CS002 10 5 15 10 20 10 8 [48 | 10 | 25 [A .[anitHlos.
3 1KG22CS003 10 5 15 10 20 10 5 | 45 9 24 Wi
4 1KG22CS004 10 5 15 10 20 10 2 | 42 8 23 \hayqle
5 | 1KG22CS005 10 5 15 10 20 10 2 | 4 8 23 [%
6 1K(G22CS006 10 5 15 10 20 10 8 | 48 | 10 | 25 |Amdie:
7 | 1KG22C8007 10 5 15 10 18 10 4 | 4 8 2 | Progl s
8 | 1KG22CS008 10 5 15 9 19 10 2 | 40 8 3 | S
9 1KG22CS009 10 5 15 10 20 10 2 | 4 8 25 | papol—
10 | 1KG22CS010 10 5 15 10 20 10 5 | 45 9 24 %
11| 1KG22CS011 10 5 15 10 20 10 4 | 44 9 24 | Muaso
12 | 1KG22CS012 10 5 15 20 7 1 | 28 6 21 | \p—
13 | 1KG22CS013 10 5 15 20 10 3 | 33 7 2 |Geos
14 | 1KG22CS014 10 5 15 10 20 10 4 | 44 9 Y e
15 | 1KG22CS015 10 5 15 8 18 10 2 | 38 8 23 | Rern
16 | 1KG22CS016 10 5 15 10 20 10 0 | 40 8 23 | [REga—
17 | 1KG22CS017 10 5 15 9 18 10 2 | 39 8 23 | i)
18 1KG22C8018 10 5 15 10 20 4 4 38 8 23 | B
19 | 1KG22CS019 10 5 15 10 20 10 1 | 4 8 23
20 | 1KG22CS020 10 5 15 10 20 10 4 | 44 9 24 By
21 | 1KG22Cs021 10 5 15 10 20 10 0o | 40 8 23 | _Pshelom
22 | 1KG22C8022 10 5 15 10 20 10 2 | 42 8 23 Mool ,
23 | 1KG22Cs023 10 5 15 0 20 10 3 | 33 7 22 | pei
24 1KG22CS024 8 5 13 7 10 10 1 28 6 19 | el—.
25 | 1KG22C8025 10 5 15 20 8 2 | 39 8 3 | A=
26 | 1KG22C8026 10 5 15 20 2 | 38 8 23
27 | 1KG22Cs027 10 5 15 10 20 10 2 | 4 8 23 &
28 | 1KG22Cs028 10 5 15 10 20 10 3 | 43 9 24 |9t
29 1KG22C8029 10 5 15 10 20 10 1 41 8 23 | GNanado
30 | 1KG22CS030 10 5 15 10 20 0 | 7 | @7 | 9 | 24 | A |
31 | 1KG22CS031 10 5 15 10 20 10 7 | 47 9 Y
32 | 1KG22CS032 10 5 15 10 20 10 3 | 43 9 24 | e
33 | 1KG22CS033 | 10 5 | 15 10 20 | 10 | 8 | 48 | 10 | 55 |Deelesbs]
Mr ena G

Faculty Signature

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT:- 560 109

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Session 2024-2025 (EVEN Semester)
MICROCONTROLLERS LABORATORY

BATCH: - A2 SUBJECT CODE: - BCS402 DATE: - 29/07/2024
SEMESTER: - IV SECTION: - A TIME: - 09.30 AM To 12.30 PM
Record Ob's ““ lout of PR E).{e Result | Viva | Total | Out of .
8.No USN vation | up cution 50 10 Total | Signature
10 5 10 20 10 | 10
1 1KG22CS034 10 5 15 10 20 10 4 |« 9 2% | end
2 1KG22CS035 10 5 15 10 20 10 2 | 42 8 3 | =
3 1KG22CS036 10 5 15 8 20 7 1 36 7 22 | Lol
4 | 1KG22CS037 10 5 15 20 10 4 | 3 | 7 22 |ppae -
5 1KG22C8038 10 5 15 10 20 10 4 | 4 9 2% | Q.S
6 1KG22CS039 10 5 15 10 10 10 4 | 34 7 2 |2 AN
7 1KG22CS040 10 5 15 10 20 10 4 | 4 9 24 | (naqac=—
8 1K(G22C8041 10 5 15 10 20 10 3 | 43 9 24 |[Ganapheetia
9 1KG22C5047 10 5 15 10 20 10 4 44 9 24 | (o
10 | 1KG22C5043 10 5 15 10 20 10 2 | 42,] 8 2 |G, s
11 | 1KG22CS644 10 5 15 10 20 10 I 9 2 |G .padd
12 | 1KG22C8045 10 5 15 10 20 10 | 3| 43| § 2 | ('t
13 | 1KG22CS046 10 5 15 10 20 10 2 | 4 8 23 | Has .
14 | 1KG22CS047 10 5 15 9 15 10 1§ 35 7 2 | U, .o
15 | 1KG22CS048 10 5 15 20 8 4 || 32 6 21 | Hao.
16 | 1KG22CS049 10 5 15 10 20 10 4 | 4 9 2% | =
17 | 1KG22CS050 10 B 15 0 20 10 5 | 35 7 22 J{jusiufesh,
18 | 1KG22C8051 10 5 15 0 20 8 s | 2 | s | 21 | A56E0—
19 | 1KG22C$052 10 5 15 0 15 10 1 | 26 5 20 |<cdp——o
20 | 1KG2208053 10 5 15 10 15 10 o | 35 7 2 XYl
21 | 1KG22CS054 10 5 15 10 20 10 2 | 42 8 2 [Eromd =l
22 | 1KG22C8055 10 5 15 10 20 10 2 | 4 8 23 | Yowot=>
23 | 1KG22C$056 10 5 15 10 20 10 4 | a4 9 24 _ﬁq—-—-.
24 | 1KG22CS057 10 5 15 10 20 10 5 | 45 9 TR
25 1KG22CS058 10 5 15 10 20 10 5 45 9 24 14k
2 | 1K(22CS059 10 5 15 10 20 10 2 | 42 8 23 =
27 | 1KG22CS060 10 5 15 10 20 10 4 | 44 9 24 [pdha s
28 | 1KG22CS061 10 | _5 15 10 20 | 10 1|« 8 23 [ff'/_ .
29 | 1KG22CS062 10 5 15 10 15 0 | 1| 36 | 7 | 2 | fus
30 | 1KG22CS063 10 5 15 9 10 10 4 | 33 7 2 [wlail o
31 | 1KG23CS400 10 5 15 10 20 10 4 | 44 9 AL IR Y
32 | 1KG23CS401 8 5 13 10 20 10 1 | 41 8 21 Y=~
33| 1KG23CS402 8 5 13 9 20 8 2 | 39 8 21 W
Jide Groak
Mts ena Mirs. Sashoiithf Suresh
Faculty Signature
gt
me Engit
De\fi’gs oHop Oé,anga‘

[

K.SI. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE

Branch : CS

Semester : 4

SINO.

USN

BCS402

1

1KG21CS020

19 (TH), 23 (PR)

1KG22CS001

13 (TH), 19 (PR)

1KG22CS002

25 (TH), 25 (PR)

1KG22CS003

25 (TH) , 24 (PR)

1KG22CS004

23 (TH) , 23 (PR)

1KG22CS005

19 (TH), 23 (PR)

1KG22CS006

25 (TH), 25 (PR)

1KG22CS007

19 (TH) , 23 (PR)

OOk]|w|d

1KG22CS008

18 (TH), 23 (PR)

—_
[e=]

1KG22CS009

20 (TH), 23 (PR)

—
—_

1KG22CS010

22 (TH) , 24 (PR)

—_
[N

1KG22CS011

22 (TH), 24 (PR)

—_
W

1KG22CS012

15 (TH), 21 (PR)

—
=

1KG22CS013

19 (TH), 22 (PR)

—
()]

1KG22CS014

20 (TH), 24 (PR)

—
D

1KG22CS015

18 (TH), 23 (PR)

—
~J

1KG22CS016

22 (TH), 23 (PR)

[Ey
Qo

1KG22CS017

15 (TH), 23 (PR)

—_
o

1KG22CS018

[N}
o

1KG22CS019

20 (TH) , 234PR)

[N]
—_—

1KG22CS020

N
[\

1KG22CS021

21 (TH) 2% (PR)
13 (TH), 23 (PR)

[\S]
w

1KG22CS022

22:(TH) , 23 (PR)

)
=

1KG22CS023

9 (TH) , 22 (PR)

N
(2]

1KG22C5¢24

17 (TH), 19 (PR)

[Nl
(=]

1KG22€5025

19 (TH), 23 (PR)

[\
~J

1KG22CS026

17 (TH), 23 (PR)

(o]
(o]

1KG22CS027

18 (TH), 23 (PR)

[N]
©

1KG22CS028

21 (TH) , 24 (PR)

@8]
o

1KG22CS029

17 (TH) , 23 (PR)

(O8]
—

1KG22CS030

w
S}

1KG22CS031

),

)
22 (TH), 24 (PR)
19 (TH) , 24 (PR)

w
w

1KG22CS032

20 (TH) , 24 (PR)

w
=

1KG22CS033

25 (TH) , 25 (PR)

w
(@]

1KG22CS034

16 (TH) , 24 (PR)

36

1KG22CS035

19 (TH), 23 (PR)

»
19 (TH), 23 (PR}

Report ID :
COLDRAFT66¢560355IA1acKG

2024-08-21 09:04:41

Page 1 of 4

SINO.

USN

BCS402

37

1KG22CS036

15 (TH), 22 (PR)

38

1KG22CS037

18 (TH) , 22 (PR)

39

1KG22CS038

18 (TH), 24 (PR)

40

1KG22CS039

23 (TH), 22 (PR)

41

1KG22CS040

23 (TH), 24 (PR)

42

1KG22CS041

20 (TH), 24 (PR)

43

1KG22CS042

20 (TH), 24 (PR)

44

1KG22CS043

20 (TH), 23 (PR)

45

1KG22CS044

19 (TH), 24 (PR)

46

1KG22CS045

22 (TH), 24 (PR)

47

1KG22CS046

21 (TH), 23 (PR)

48

1KG22CS5047

13 (TH), 22 (PR)

49

1KG22CS048

16 (TH), 21 (PR)

50

1KG22CS049

17 (TH) , 24 (PR)

Sl

1KG22CS050

18 (TH) , 22 (PR)

52

1KG22CS051

16 (TH), 21 (PR)

53

1KG22CS052

15 (TH), 20 (PR)

54

1KG22CS053

13 (TH), 22 (PR)

95

1KG22CS054

19 (TH), 23 (PR)

56

1KG22CS055

23 (TH), 23 (PR)

o7

1KG22CS056

22 (TH) , 24 (PR)

58

1KG22CS057

22 (TH) , 24 (PR)3

59

1KG22CS058

21 (TH) , 24 (BR)

60

1KG22CS059

16 (TH) , 20YPR)

61

1KG22CS060

18 (TH{Y 24 (PR)

62

1KG22CS061

19 (IH) , 23 (PR)

63

1KG22CS062 |

I8 (TH) , 22 (PR)

64

1KG22CS063

17 (TH) , 22 (PR)

65

1KG2288064

21 (TH), 24 (PR)

66

1K@22CS065

21 (TH), 23 (PR)

67

1KG22CS066

12 (TH) , 23 (PR)

68

1KG22CS067

21 (TH), 24 (PR)

69

1KG22CS068

16 (TH), 21 (PR)

70

1KG22CS069

16 (TH), 23 (PR)

71

1KG22CS070

19 (TH), 23 (PR)

72

1KG22CS071

22 (TH), 23 (PR)

7%

1KG22CS072

16 (TH), 21 (PR)

74

1KG22CS073

16 (TH), 21 (PR)

75

1KG22CS074

18 (TH), 23 (PR)

Report ID :
COLDRAFT66¢5603551A1acKG

2024-08-21 09:04:41

Page 2 of 4

SINO.

USN

BCS402

76

1KG22CS075

16 (TH), 21 (PR)

77

1KG22CS076 |

15 (TH), 22 (PR)

78

1KG22CS077

20 (TH), 23 (PR)

79

1KG22CS078

23 (TH) , 25 (PR)

80

1KG22CS079

17 (TH), 21 (PR)

81

1KG22CS080

22 (TH) , 24 (PR)

82

1KG22CS081

14 (TH), 23 (PR)

83

1KG22CS082

17 (TH), 21 (PR)

84

1KG22CS083

23 (TH), 25 (PR)

85

1KG22CS084

19 (TH), 21 (PR)

86

1KG22CS085

20 (TH), 23 (PR)

87

1KG22CS5086

21 (TH), 23 (PR)

88

1KG22CS087

20 (TH), 24 (PR)

89

1KG22CS088

17 (TH), 20 (PR)

90

1KG22CS089

12 (TH), 16 (PR)

91

1KG22CS090

20 (TH), 23 (PR)

92

1KG22CS091

18 (TH), 22 (PR)

93

1KG22CS092

17 (TH), 23 (PR)

94

1KG22CS093

21 (TH), 24 (PR)

95

1KG22CS094

24 (TH) , 24 (PR)

96

1KG22CS095

22 (TH), 25 (PR)

97

1KG22CS096

24 (TH) , 25 (PR)};

98

1KG22CS097

19 (TH) , 22 (RR)

99

1KG22CS098

21 (TH) , 22'(PR)

100

1KG22CS099

16 (TH{Y 22 (PR)

101

1KG22CS100

21) , 25 (PR)

102

1KG22CS101

16 (TH) , 20 (PR)

103

1KG22CS 102

22 (TH), 25 (PR)

104

1KG22G8103

18 (TH), 23 (PR)

105

1KG22CS104

21 (TH), 24 (PR)

106

1KG22CS105

18 (TH), 24 (PR)

107

1KG22CS106

13 (TH), 21 (PR)

108

1KG22CS107

15 (TH), 20 (PR)

109

1KG22CS108

17 (TH) , 23 (PR)

110

1KG22CS109

14 (TH) , 14 (PR)

111

1KG22CS110

17 (TH), 18 (PR)

112

1KG22CS111

18 (TH) , 23 (PR)

15188

1KG22CS112

22 (TH), 24 (PR)

114

1KG22CS113

15 (TH), 23 (PR)

Report ID ;
COLDRAFT66¢560355I1A1acKG

2024-08-21 09:04:41

Page 3 of 4

SINO.

USN

BCS402

115

1KG22CS114

19 (TH), 22 (PR)

116

1KG22CS115

23 (TH), 24 (PR)

117

1KG22CS116

16 (TH), 22 (PR)

118

1KG22CS117

19 (TH), 23 (PR)

119

1KG22CS118

15 (TH), 22 (PR)

120

1KG22CS119

20 (TH), 23 (PR)

121

1KG22CS120

19 (TH) , 20 (PR)

122

1KG22CS121

17 (TH) , 24 (PR)

123

1KG22CS122

21 (TH) , 24 (PR)

124

1KG22CS123

21 (TH), 24 (PR)

125

1KG22CS124

19 (TH), 23 (PR)

126

1KG22CS125

12 (TH), 18 (PR)

127

1KG23CS400

18 (TH) , 24 (PR)

128

1KG23CS401

17 (TH), 21 (PR)

129

1KG23CS402

17 (TH), 21 (PR)

130

1KG23CS403

12 (TH), 19 (PR)

131

1KG23CS404

14 (TH), 19 (PR)

132

1KG23CS405

14 (TH), 14 (PR)

133

1KG23CS406

12 (TH), 18 (PR)

G

Report ID ;
COLDRAFT66¢560355IA1acKG

2024-08-21 09:04:41

Page 4 of 4

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE END SURVEY -1V 'A'

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

The course increased
your level of
interest? [TThis

The course increased
your Jevel of
interest? [The course

The course increased
your level of
interest? [The course

The course increased
your level of
interest? [The course

The course increased
your level of
interest? |The course

The course increased
vour level of
interest? [This

Timestamp Emsil Name USN course has increased | content was assignments/tests improved my ability has given enough course has given you Sfudent's
your level of interest understandae:)il? and :isses wh.at I l‘mve ;:ndgeuv:;zpp:;;er':l:? knowledge about 3':;:?:‘“ ding to Signature
(l:’;licrocontrollers..l :::Z:’tll‘le::: :Ilﬂllll:l:l'.l ::l:’rl;:'.il e e (ERC2IGH 5::;:]!’9‘1 L take up next level
processor.] courses.|
7/30/2024 12:03:51 | Vishnuappitli@gmail.com AG Vishnu 1KG22CS001 HIGH HIGH HIGH HIGH HIGH HIGH WA
7/26/2024 12:23:40| pavithral 512004@gmail.com | A Pavithra 1KG22CS002 HIGH HIGH HIGH HIGH HIGH HIGH A '
7/26/2024 10:42:56|s.abhishek140205@gmail.com | Abhishek S 1KG22CS003 HIGH HIGH HIGH HIGH HIGH HIGH - M P, b
7/26/2024 10:43:44 | akshaya krishna.4k@gmail.com | Akshaya K 1KG22CS004 HIGH HIGH HIGH HIGH HIGH HIGH m}mb‘b
" q L,

7/27/2024 15:57:07 | allurujyothish2004@gmail.com glg‘:l:?sl‘{;n::;;sm L PIC HIGH HIGH HIGH HIGH HIGH HIGH A “JHOH"_"E;[')
7/26/2024 10:52:15| amishavamisha@gmail.com Amisha.V 1KG22CS006 HIGH-._ —_HIGH HIGH HIGH HIGH HIGH P Y]
7/30/2024 12:05:51 | anaghas2020@gmail.com Anagha S 1KG22CS007 LOW HIGH HIGH MEDIUM HIGH HIGH
7/26/2024 14:33:50| krisl 18782@gmail.com A Krishna Sai IKG22CS008 HIGH RIGH HIGH HIGH HIGH HIGH 3
7/27/2024 15:51:45 | anchalrssingh@gmaii.com Anchal LKG22C3009 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 16:33:07 | anjanarcl305@gmail.com Anjana R.C IKG22CS010 HIGH HIGH HIGH HIGH HIGH HIGH =
7/27/2024 15:56:24 | avvvviiiiil L@gmail.com Avinash Nayak 1KG22CS011L HIGH HIGH HIGH HIGH . HIGH HIGH
7/27/2024 17:13:23 | bangidarshanI@email.com B M Darshan 1KG22CS012 HIGH HIGH HIGH HIGH HIGH HIGH @N
7/26/2024 10:49:17 | rushithabnreddy@gmail.com BN Rushitha 1KG22CS013 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 10:33:43 | bushasree04@gmail.com B.Usha Sree 1KG22CS014 HIGH HIGH HIGH HIGH HIGH HIGH 1) _,..
7/26/2024 11:10:49| bvdeekshajain19@gmail.com B V DEEKSHA JAIN 1KG22CS015 HIGH HIGH HIGH HIGH HIGH HIGH A =
7/26/2024 11:00:56 | kgowdabhanupriya@gmail.com |Bhanupriya K IKG22CS016 HIGH HIGH HIGH HIGH HIGH HIGH S
7/26/2024 10:33:52 | bharath.m.2004@gamil.com BHARATHR N IKG22CS017 HIGH HIGH HIGH HIGH HIGH HIGH
7/28/2024.17:13:57| bhavyadnaidud7@gmail.com |Bhavya D 1KG22CS018 HIGH HIGH HIGH HIGH HIGH HIGH

BOURISETTI ~
7/26/2024 11:41:44| behaitanya7174@gmailcom | CHAITANYA el HiCH o I e HIGH HIGH W
7/26/2024 13:02:18 | bymnipurushatham04@gmail.com|Byni purushotham 1KG22CS021 HIGH HIGH HIGH HIGH HIGH HIGH ; b
7/27/2024 19:12:13| gowthamnaidu979@gmail.com |Gowtham C 1KG22CS022 HIGH HIGH HIGH MEDIUM MEDIUM MEDIUM [
7/27/2024 17:00:03 | Anaghacr@gmail.com CR anagha 1KG22CS023 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM
7/26/2024 14:38:48| Chaithanya84313@gmail.com |Chaithanya ¢ 1KG22cs024 HIGH HIGH HIGH HIGH HIGH HIGH Q%‘ A
7/26/2024 10:45:12 | chaitranayaka203@gmail.com |Chaitra ¢ 1KG22CS025 HIGH HIGH HIGH HIGH HIGH HIGH 2
7/26/2024 10:32:36| challapavan456@gmail.com Challa Pavan Kumar 1KG22CS026 HIGH HIGH HIGH HIGH HIGH HIGH {Calad
7/26/2024 14:38:14| charannadiu05@gmail.com Charan kumar pk 1KG22CS027 HIGH HIGH HIGH HIGH HIGH HIGH A
7/26/2024 14:41:15| charantr1 23@gmail.com Charan TR 1KG22C5028 HIGH HIGH HIGH HIGH HIGH HIGH W
7/26/2024 10:32:38| dm701627@gpmail.com D Mahesh 1KG22CS029 HIGH HIGH HIGH HIGH HIGH HIGH
7/30/2024 11:45:37 | shreyasdsd1 @gmail.com D.shreyas 1KG22CS030 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 10:54:45| dandashalini448@gmail.com D shalini IKG22CS031 HIGH HIGH HIGH HIGH HIGH HIGH SMM

Dasari Yasaswi
7/26/2024 10:35:33| yasaswinanda@gmailcom |Nanda i HIGH | R — e HIGH @
7/26/2024 12:39:15| deekshadsher.oy24@gmail.com |Deeksha D Shenoy 1KG22C5035 HIGH HIGH AiCGH HIGH HIGH HIGH %‘
7/26/2024 10:31:03 | dishasatish2004@gmail.com Disha S 1KG22CS034 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM
7/30/2024 14:25:25]- diya 1KG22CS055 Low MEDIUM MEDIUM LOW LOW MEDIUM

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE END SURVEY -1V 'A’

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109

The course increased
your level of
interest? [TThis

The course increased
your level of
interest?. [The course

The course increased
your level of
interest? [The course

The course increased
your level of
interest? [The course

The course increased
your level of
interest? |The course

The course increased
your level of
interest? [This

. q : improved my ability d course has given you |Student's
Timestamp Email Name USN course has ln.creased content was assignments/tests to develop assembly has given enough enough Signature
your level of interest understandabI? and |asses wh.z\t I !mve lanouage progmm§ knowledge about understanding to
on was presented in 2 (learned in this I'orl:leBVH-LP C2148 Em‘bedded system take up next level
Microcontrollers..] |[structured manner.] course.] processor.] design.| courses,|
7/28/2024 13:10:39 | madhanellanti@gmail.com E.Madhan kumar 1KG22CS036 HIGH HIGH HIGH HIGH HIGH HIGH E m&*
7/26/2024 10:39:09 |lokilokesh403 [@gmail.com E.LOKESH 1KG22CS037 HIGH HIGH HIGH HIGH HIGH HIGH £ g,bap.
7/26/2024 10:32:33 | rajsharath323@gmail.com G sharath rj 1KG22CS038 HIGH HIGH HIGH HIGH HIGH HIGH 9.;;;_7
7/26/2024 12:44:30| gudetivha@gmail.com G Uha 1KG22CS039 HIGH HIGH HIGH HIGH HIGH HIGH [}‘.\M
7/26/2024 11:02:17 | gaganashrees26@gmail.com Gagana Shree S 1KG22CS040 MEDIUM HIGH HIGH MEDIUM HIGH HIGH (JLGBEE'
7/27/2024 16:38:08 |cnganashree@gmail.com Ganashree C N 1KG22CS041 HIGH HIGH HIGH HIGH HIGH HIGH byouhgrhon
7/27/2024 17:10:05 | kavyagnavs25@gmail.com G Kavya 1KG22CS042 HIGH HIGH HIGH HIGH HIGH HIGH &kﬂg_—
7/26/2024 §0:39:00 | goltakusumayadav@gmail.com |Golla Kusuma 1KG22CS043 HIGH HIGH HIGH HIGH HIGH HIGH]
Gonuguntla Prashanth
7/26/2024 10:35:32 laprashanth6301 @gmai Kumafu 1KG22CS044 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2924 15:59:01 | gorthiyaswanth60@gmail.com |G Yaswanth 1KG22CS045 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 17:42:51 | harishra2500@gmail.com Harish R A ¢ 1KG22CS046 HIGH HIGH HIGH HIGH HIGH HIGH
7/30/2024 14:17:08 | harshacv2004@gmail.com Harsha 1KG22CS047 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 14:38:48 | harshithack3210@gmail.com |Harshitha C K 1KG22CS048 HIGH HIGH HIGH - HIGH HIGH HIGH
7/27/2024 19:25:35 | hemanthbubby007@gmail.com |Hemanth R 1KG22CS049 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 15:48:57 | hrishi2 186@gmail.com Hrishikesh B § IKG22CS050 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 12:22:13 |jujappagarisaisrce2266@gmail.cd) saisree 1KG22CS0O51 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 15:50:21 | jampulaabhilash086@gmail.com | Jampula Abhilash 1KG22CS052 HIGH. HIGH HIGH HIGH HIGH HIGH
7/30/2024 14:49:27 | ngayathri929@gmail.com K.Gayathri 1KG22CS053 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 22:02:45 | kpramodkurubal @gmail.com |K Pramod Kumar IKG22CS054 HIGH HIGH HIGH HIGH HIGH HIGH
7/28/2024 17:15:30 | kavan19980@gmail.com Kavana S M 1KG22CS055 HIGH HIGH HIGH HIGH HIGH HIGH]
7/27/2024 17:08:23 |kavyabullappa@gmail.com Kavya S IKG22CS056 HIGH HIGH HIGH HIGH HIGH HIGH .
7126/2024 10:57:07 | Keerthanagby@gmail com Keerthann B 1KG22CS057 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 10:32:54 | kollabhavana2728@umail.com |K. Bhavana 1KG22CS058 HIGH HIGH HIGH HIGH HIGH HIGH
7/27/2024 16:35:10| kollabhavana2728@gmail.com |K. Bhavana 1KG22CS058 HIGH HIGH HIGH HIGH HIGH HIGH
7/26/2024 10:33:32 | koushikkaushikkousi@gmail.conl KOUSHIK 1KG22C8059 HIGH HIGH HIGH HIGH HIGH HIGH #yé'gp i
7/26/2024 14:38:20 | Lekkalapudidhayatri@gmail.con{ Dhayatri 1KG22CS060 HIGH HIGH HIGH HIGH HIGH HIGH Elisasly:
7/27/2024 16:39:18| likhitha83 107@gmail.com Likhitha P V 1KG22C8061 HIGH HIGH HIGH HIGH HIGH HIGH U
7/27/12024 16:01:32 | Likitha02vj@gmail.com Likitha R 1KG22CS062 LOW MEDIUM MEDIUM HIGH MEDIUM LOW i
7/27/2024 9:17:48 | msaija53@gmuil.com Saija 1KG22CS063 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM m‘\:p«
7/26/2024 10:37:45 | gowthamchoyaS@gmail.com |Gowtham 1KG23CS400 HIGH HIGH HIGH HIGH HIGH HIGH A
7/26/2024 14:23:58 |iqraaimank@gmail.com Igraa Iman khan 1KG23CS401 HIGH HIGH HIGH HIGH HIGH HIGH weh & .
L - Muddassir Ahmed 1|1 52303402 MEDIUM HIGH HIGH HIGH HIGH HIGH

imtorgal786@gmail.com

Torgal

&0

60

40

20

B HIGH B MEDIUM B LOW

FACUL IGNATURE

Puter Science Engineering
.S School of Engineering & Management
Bangalore-56010q

—ag

*a

a.

om
= | co
sjuapn)s o
njinivinjvmvivnnn|ongvivii|Ti|V DIV TV |
SpP1BMO) 2PMINY 0]
~|o
< |
Suijsunod |
nmiuvnuvnlviv|v|vvnigFlviviVivi|T VLWL WL LW T |bvn(Liv|itn|wviwm|wn m
/ 153) JO UONIBN[BAT °6 o
5]
2 ¢ £
= S =
‘
v MaiA Jo jurod wiexa / . =< v
Y ninvlvivlviviv|gsiviviviviv|isTFtiBiviviiV|IT|IWL WD winjiun|w|w .
i 23e182A0 sSnqe[AS '
)
=
. ~| o
= uonesdde 3|a
= . =t
By 20 eonpdead yum mnlolvlvlv|lv|v|lvn|g|s|v|viv]|v|s(viviv|vivn|v|viviv|niviv]n]|n
= .E i i
= 123lgns Sunjuiy *
& 5 ! M
Mz E
PR m M
< B UOIIBIIUN W WO oA
= 5 o R P
EEWn /139fgqns N I R I R S Y R A R R T A D e R Tl A R Rl
-5 (=)
m e Qg 343 JO UOEBIUISAL] "9
S
R O N N O
wv b - < | o
L ax 3} . A
Mwwm agpsmouy 312[qng g [| |w v |w|wv v|wv| v [v v |v |V]Ww W[N] W (WO (W)L
= S’
o D
2 |
3 ES
e« = a |
onb SIE-l= Sjuspn)s SUIIBALIOIA] bl -
— = D M . | ¥
HMNF = [uondeRu] *y in|fm|v|un|n|v|n|s|sv|n|v|v|s|v|v|v|v|v|g|v|v]v|n]|v|n]n]|n = ..
O S =4 Wh
S EF b S 2
B € & Q =P
2 E a8 p1E0q JO RIE ;
S 2 asn 341393y ; ure(dxa e :
5 D) .H .v.w \ . — ’ \5 niunniviviiv|gFsivvivivn(g|kFVLILI|WLIWLIWL|N|WN|W N | 1y e
S 3 yoea) 03 K3QY °¢ o
J— - bt = x—
) = S =
= 3 uonezinN dwWn @: & B
| TR
>) o y . < 5w
n nn.wﬂ sseD 7 Anenund ‘7 lwm|n|wv|w|vlvn|v|<|v]un|n|v]vn]s|v|v|v]v|v|v]v|v|wv|n]nfn]n]n i =5
o Sl 0] e
N = = D
iy =
J = oo Nu__a
X] uonesiuedio » 2 e 5 m
2 IR=) ¥]
s . =g S
MM.@M:_::NE@Z«U@.&M—55555555455555455555555555555 o L : 8
ol [«)} G L
o =
Slol=s : = O
1HE 5 £
Z|2|2 - g9
Z | = @ | np|® =
> s | L 5|23 a
=3 OlH|NN|TIV|V|IIN|V|N|O|H N un 0 ©
S e 2 dlajm|a|n|o|noloS2N2I2]25R2|RIRIN|ISIRQ|Q|INR|K| <p 3
ol =2 n =lol¥
sl o= v e8|z
=00 o o

	Philosophy of RISC design
	The ARM Design Philosophy
	Embedded System Hardware
	Embedded System Software
	ARM core dataflow model
	REGISTERS
	Current Program Status Register:
	• System mode is a special version of user mode that allows full read-write access to the cpsr.
	• User mode is used for programs and applications.
	• The saving of the cpsr occurs only when an exception or interrupt is raised.
	Pipeline
	Core Extensions
	MODULE -2
	Data Processing instructions
	Branch Instructions
	LOAD-STORE INSTRUCTIONS
	Multiple-Register Transfer
	Stack Operations
	SWAP INSTRUCTION
	SOFTWARE INTERRUPT INSTRUCTION
	PROGRAM STATUS REGISTER INSTRUCTIONS
	Coprocessor Instructions
	LOADING CONSTANTS
	STRUCTURE ARRANGEMENT
	PORTABILITY ISSUES

