

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2020-2021 (ODD SEMESTER)

III SESSIONAL TEST QUESTION PAPER Set-A

ÚSN

Degree

: B.E

Branch

Electronics and Communication Engineering

Semester:

Course Code: 18EC52

Course Title

Digital Signal Processing

Date: 05/01/2021

Duration 90 Minutes Max Marks: 30

Note: Answer ONE full question from each part.

Q No.	Question	Marks	K- Level	CO mappi ng
	PART-A			
1(2)	Tabulate the Analog to Analog transformation of IIR filter	5	Applyi ng K3	CO4
(b)	Design an Butterworth digital filter having the following specifications Kp= 3dB at 0.5pi rad Ks=15dB at 0.75pi rad Use BLT	5	Applyi ng K3	CO4
(c)	Draw block diagram explain Digital signal processors architecture	5	Applyi ng K3	CO5
	OR			
2(a)	Derive the expression of linear – phase response FIR filter having impulse response with even length & symmetric nature.	. 5	Applyi ng K3	CO4
(b)	Design an Butterworth digital filter having the following specifications Kp= -3dB at 50Hz and 20KHz Ks=20dB at 20Hz and 45KHz	5	Applyi ng K3	CO4
(c)	Make use of diagram and briefly the following special Digital Signal Processor hardware units. (i) Multiplier and Accumulator (MAC) Unit (ii) Shifters	5	Applyi ng K3	CO5
	PART-B			
3(a)	A low pass filter is to be designed with the following desired frequency response: $Hd(\omega) = \{e^{-J12w}, for \ \omega \le \pi/6$		Applyi ng K3	
	0, for $\pi/6 < \omega \le \pi$ Determine the coefficients of filter with the Hamming window.	5		CO4

(b)	Design an FIR filter having the following specifications Pass band edge freq 1.5KHz Stop band edge freq 2KHz Ks = 50dB Sampling Freq = 8KHz	5	Applyi ng K3	CO4
(c)	Express the following decimal numbers into Q – 15 representation. (i) 0.68011 (ii) –0.68011	5	Applyi ng K3	CO5
	OR			
4(a)	Determine H(w) if H _d (w) = 0 $ w < \pi/4$ e^{-j2w} $\pi/4 < w < \pi$ Use rectangular window	5	Applyi ng K3	CO4
(b)	Design an FIR filter using frequency sampling technique if $wc = \pi/2$ and $N = 7$	5	Applyi ng K3	CO4
(c)	List the range of numbers that can be represented using signed magnitude 3bit 2's complement format.	5	Applyi ng K3	CO5

Course Incharge

Head of the Department
Professor & Head

I. of Electronics & Communication Engineering
K. S. School of Engineering & Management
Bangalore-560 109

Principal

Dr. K. RAMA NARASIMHA

Principal/Director

KS School of Engineering and Manager.

Bengalura - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

USN

SESSION: 2020-2021 (ODD SEMESTER) III SESSIONAL TEST QUESTION PAPER

Set-B

Degree

Electronics and Communication Engineering

Semester : Course Code: 18EC52

VA&B

Course Title

Digital Signal Processing

Date: 05/01/2021

Duration

Branch

90 Minutes

Max Marks: 30

Note: Answer ONE full question from each part.

Q No.	Question	Marks	K- Level	CO mappi ng
	PART-A	<u> </u>		
1(a)	Derive the expression for BLT frequency mapping	5	Applyi ng K3	CO4
(ъ)	Design an Butterworth filter having the following specifications Kp=-3dB at 50Hz and 20KHz Ks=20dB at 20Hz and 45KHz	5	Applyi ng K3	Ċ04
(c)	Make use of diagram and explain address generators and shifters	5	Applyi ng K3	CO5
	OR			
2(a)	Determine H(w) if H _d (w) = $\begin{cases} 0 & w < \pi/4 \end{cases}$ $e^{-j2w} & \pi/4 < w < \pi$ Use rectangular window	5	Applyi ng K3	CO4
(b)	Design an Butterworth digital filter having the following specifications Tolerance in passband 0.7 at 0.5pi rad Tolerance in passband 0.118 at 0.75pi rad Use BLT	5	Applyi ng K3	CO4
(c)	Sketch and explain (i) Harvard architecture (ii) Von-Neumann architecture	5 .	Applyi ng K3	CO5
•	· PART-B			
3(a)	Tabulate the Analog to Analog transformation of IIR filter	5	Applyi . ng K3	C04
(b)	A low pass filter is to be designed with the following desired frequency response: Determine the coefficients of a 25 – tap filter based on the window method with the Hamming window $Hd(\omega)=\{1, for \ \omega \le \pi/6$ 0, $for \pi/6 < \omega \le \pi$	5	Applyi ng K3	CO4

	Convert the following decimal numbers into signed magnitude form check if overflow occurs		Unders tanding	
(c)	(i) 3 x(-1) (ii) 2x(-2) (iii) 3x(-3)	5	K2	CQ5
	OR			•
4(a)	Design an FIR filter using hamming window with Pass band edge freq of 1500Hz, Stop band edge freq of 2000Hz and Sampling Freq of 8000Hz	5	Applyi ng K3	CO4
(b)	Design an FIR filter using frequency sampling technique of order 7 and cutoff frequency $\pi/2$.	5	Applyl ng K3	CO4
(c)	Convert the following decimal numbers into Q – 15 representation. (i) -0.59111 (ii) 0.65902	5	Unders tanding K2	CO5

(5)

Course Incharge

Head of the Department

Principal