

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SESSION: 2023-2024 (EVEN SEMESTER)

FIRST ASSIGNMENT

Degree Branch B.E

Semester : IV

Course Title

ECE

Course Code :

BEC401

ELECTROMAGNETIC THEORY

Max Marks : 25

Last Date for : 21/05/2024

Date

11/05/2024

submission

Q No.	Question	Marks	K- Level	CO mapping
	a) Compute cylindrical and spherical coordinates for the point P(3,4,5). Also write the equations for differential			
	length, differential surface, differential volume for rectangular, cylindrical and spherical systems.		Applying (K3)	
1	b) State and Explain coulombs law of force between N-point charges in vector form.	5	Understanding (K2)	CO1
	c) Four10nC positive charges are located in the Z=0 plane at the corners of square 8cm on a side. A fifth 10nC positive charge is located at a point 8cm distance from the other charges. Find the magnitude of total force on this fifth charge for $\epsilon = \epsilon_0$.		Applying (K3)	
	a) Point charges of 20nc each are located at A(2,0,0), B(-2,0,0), C(0,2,0) & D(0,-2,0). Find the total force on charge at Point A and also find electric field at A.		Applying (K3)	
	b) The Three vertices of a triangle are located at A(6,-1,2), B(-2,3,-4) & C(-3,1,5). Determine i) RAB x RAC ii) Area of Triangle		Applying (K3)	
2	 c) Find electric flux density in RCS at point P(6,8,-10) due to i) A point charge of 40mc at the origin ii) A uniform line charge of ρ_L=40μC/m on the z-axis & iii) A uniform surface charge of density ρ_S=57.2μC/m² on the plane x=12m 	5	Applying (K3)	CO1
	a) Derive an expression for electric field intensity due to infinite line charge.		Applying (K3)	
3	b) Interpret Coulombs law to find the relation between charges Q1 and Q2 such that force on unit positive charge at (-2,3,0) have (i) No x-component (ii)No y-component. Two point charges Q1 and Q2 are located at (3,7,0)m and (4,0,0)m.	5	Applying (K3)	COI

	c) Find divergence of $\vec{D} = (2xyz - y^2)\hat{a_x} + (x^2z - 2xy)\hat{a_y} + x^2y\hat{a_z} \text{ at } P(2,3,-1)$		Applying (K3)	
5	b) Evaluate both sides of Gauss's Divergence theorem for $\overrightarrow{D} = 2xyz \ \widehat{a_x} + 3y^2z \ \widehat{a_y} + x \ \widehat{a_z}$, -1< x, y, z<+1	5	Applying (K3)	CO2
	a) State and Prove Divergence theorem.	5	Applying (K3)	CO2
	c) Starting from Del Operator, Derive maxwell's first equation.		Applying (K3)	
4	b) Given, $D = \frac{\rho^2 z^2}{3} \cos \phi \hat{a}_{\phi}$. Find flux crossing $\phi = \frac{\pi}{4}$ half plane defined by $0 \le \rho \le 3, 2 \le z \le 4$.		Applying (K3)	
	a) Derive Gauss's Law in integral form with its statement.		Applying (K3)	. 1
	i) $\rho_v = \rho^2 z^2 \sin{(0.6\phi)}$; $0 < \rho < 0.1$, $0 < \phi < \pi$, $2 < z < 4$ ii) Universe: $\rho_v = e^{-2r}/r^2$		Applying (K3)	
	c) Find the total charge within each of the indicated volumes.			

Course Incharge

Professor & Head

Dept. of Electronics & Communication Engineering K.S. School of Engineering & Management Bangalore - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SESSION: 2023-2024 (EVEN SEMESTER)

SECOND ASSIGNMENT

Degree Branch Course Title

Date

B.E.

ECE ELECTROMAGNETIC THEORY

19/6/2024

Semester

IV

Course Code Max Marks

BEC 401 25

Last Date for

03/07/2024

submission

Q No.	Question	Marks	K- Level	CO
	a) Derive an equation for Energy expended in moving a point charge in an electric field.		Applying (K3)	CO2
	b) Derive point form of current continuity equation.		Applying (K3)	CO2
1	c) Given that $\vec{J} = 10\rho^2 Z \hat{a}_{\rho} - 4\rho \cos^2 \Phi \hat{a}_{\phi} mA/m^2$. Find total current flowing outward through circular band $\rho = 3$, $0 < \Phi < 2\pi$, $2 < Z < 2.8$	5	Applying (K3)	CO2
2	a) Find the Work done in carrying a 6C of charge from A(1.8.5) to B(2.18.6), If $\vec{E} = -8xy\hat{a}_x - 4x^2\hat{a}_y + \hat{a}_z$ V/m along the path $y = 3x+2$, $z = x+4$		Applying (K3)	CO2
	b) Determine total current & volume charge density if velocity is $2x10^6$ m/s at z=0.1m. Given $\hat{J} = -10^6 Z^{1.5}$ at Z direction in $0 < \rho < 20 \mu m$. Also if charge density is -2000 C/m ³ at Z = 0.15m, obtain charge velocity at that point.	5	Applying (K3)	CO2
	 c) Derive for Line integral with respect to work done in different paths. 		Applying (K3)	CO2
3	a) State and Prove Poisson's and Laplace equation.		Applying (K3)	CO3
	b) Determine Capacitance of Two concentric spheres using Laplace Equation.	5	Applying (K3)	CO3
The second second	c) Find V. \vec{E} , Q and C for which Conducting spherical shells with radii $a = 10 \text{cm}$ & $b = 20 \text{cm}$ are maintained at a potential difference of 80V such that V=0 at $r = b$ & V=80V at $r = a$, and relative permittivity = 3.5		Applying (K3)	cos
4	a) Determine \vec{E} at P(3,1,2) for the field of 2 Co-axial Conducting Cylinders V=50V at ρ = 2m, V=20V at ρ = 3m		Applying (K3)	соз
	b) Find the incremental field strength at P2 due to the current element of 2πå, μA,m at P1. The coordinates of P1 and P2 are (4,0,0) and (0,3,0) respectively.	5	Applying (K3)	CO3
	c) Derive Biot-Savart Law and Ampere Circuital Law for magnetic field with its statement.		Applying (K3)	соз

5	a) Evaluate stokes theorem for $\vec{H} = 6xy\hat{a}_1 - 3y^2\hat{a}_1$. $2 < x < 5$ $1 < y < 1$, $z = 0$. Let the positive direction of "ds" be Z.		Applying (K3)	co3
	 b) Determine whether following equations satisfies Laplace equations i) V = 2x²-3y²+z² ii) V = r²cosΦ + θ 	5	Applying (K3)	CO3
	c) Find numerical values for V and ρ_v at point P in free space if i) $V = \frac{4yz}{r^2+1}$ at $P(1,2,3)$ ii) $V = 5\rho^2 \cos 2\Phi$ at $P(3,60^\circ,2)$		Applying (K3)	CO3

Professor & Head
Professor & Head
Dept. of Electronics & Communication Engu.
K.S. School of Engineering & Management
Bangalore - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2023-2024 (EVEN SEMESTER)

Activity

Degree

B.E

Branch

ECE

Course Title

Date

Electromagnetic Theory 23/7/2024

Semester

IV A & B

Course Code

: BEC401

: 30/7/2024

Max Marks

: 25

Last Date for

submission

Q No.	Question	Marks	K- Level	CO mapping
1	Build force on a differential current element with equations	5	Applying (K3)	CO4
2	Construct force between differential current elements with neat diagrams and equations	5	Applying (K3)	CO4
3	Derive Maxwell's equations in static field	5	Applying (K3)	CO4
4	Build Poynting's Theorem with its statement	5	Applying (K3)	CO5
5	Derive General Wave equations in electric and magnetic field for freespace	5	Applying (K3)	CO5
	OR			
6	Derive equations for Magnetic circuits with suitable diagram	5	Applying (K3)	CO4
7	Build magnetic boundary conditions with neat diagram	5	Applying (K3)	CO4
8	Derive Maxwell's equations in time varying field	5	Applying (K3)	CO4
9	Obtain the solution of wave equation for uniform plane wave in freespace	5	Applying (K3)	CO5
10	Build equations for skin depth and loss tangent	5	Applying (K3)	CO5

Professor & Head

Dept. of Electronics & Communication Engineering K.S. School of Engineering & Management Sangalore - 560 109