KSSEM

K S SCHOOL OF ENGINEERING & MANAGEMENT

DEPARTMENT OF APPLIED SCIENCE

Discrete Mathematics Structures / BCS405A QUESTION BANK

MODULE 1 FUNDAMENTALS OF LOGIC

- 1. Explain the following with an example each
 - (a) Proposition (b) Tautology (c) Contradiction (d) Contingency (e) logical connectives (f) Rule of universal specification.
- 2. Examine whether the compound proposition is logical equivalent using truth tables:
 - a. $[p \rightarrow (q \land r)] \Leftrightarrow [(p \rightarrow q) \land (p \rightarrow r)]$
 - b. $[(p \lor q) \rightarrow r] \Leftrightarrow [(p \rightarrow r) \land (q \rightarrow r)]$
- 3. Prove that the following compound proposition is tautology or not using truth table.
 - a). $[(p \lor q) \land \{(p \to r) \land (q \to r)\}] \to r$
 - b). $\{p \rightarrow (q \rightarrow r)\} \rightarrow \{(p \rightarrow q) \rightarrow (p \rightarrow r)\}$
- 4. Prove the following by using the laws of logic:
 - a. $(p \rightarrow q) \wedge [\neg q \wedge (r \vee \neg q)] \Leftrightarrow \neg (q \vee p)$
 - b. $[\neg p \land (\neg q \land r)] \lor (q \land r) \lor (p \land r) \Leftrightarrow r$
 - c. $[(p \lor q) \land (p \lor \neg q) \lor q] \Leftrightarrow p \lor q$
 - d. $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$
- 5. Prove the validity of the following arguments:
 - a. No engineering student of first or second semester studies logic
 Anil is an engineering student who studies logic
 - : Anil is not in second semester
 - b. If Ravi studies, then he will pass in DMS
 If Ravi does not play cricket, then he will study

Ravi failed in DMS

: Ravi played cricket

- c. Test the validity of the following arguments:
 - (a). $p \land q$

 $q \rightarrow r$

r -s

4 8

- 6. Let p, q, r be the propositions having truth values 0,0, and 1 respectively. Find the values of the following's propositions:
 - a. (pVq) V r
 - b. $(p \land q) \rightarrow r$
 - c. $P \wedge (r \rightarrow q)$
 - d. $p \rightarrow (q \rightarrow \neg r)$

7. Prove the following argument is valid:

$$\forall x, [p(x) \lor q(x)]$$

$$\exists x, [\neg p(x)]$$

$$\forall x, [\neg q(x) \lor r(x)] \neq x, [s(x) \rightarrow \neg r(x)]$$

$$\therefore \exists x [\neg s(x)]$$

(b)
$$p \rightarrow q$$

 $q \rightarrow (r \land s)$
 $\neg r \lor (\neg t \lor u)$
 $p \land t$
 $\therefore u$

8. i) State converse, inverse and contrapositive for the condition along with necessary and sufficient condition.

If a quadrilateral is a parallegram then its diagonals bisect each other If a triangle is not isosceles, then it is not equilateral.

(ii) Define (a) open sentence (b) quantifiers.

For the following statements, the universe comprises of all non-zero integers. Determine the truth values of each statement by considering the following open statements:

$$p(x): x \ge 0, \quad q(x): x^2 \ge 0 \qquad r(x): x^2 - 3x - 4 = 0 \quad s(x): x^2 - 3 > 0$$

$$(i) \exists x, p(x) \land q(x) \qquad (ii) \forall x, p(x) \rightarrow q(x) \qquad (iii) \forall x, q(x) \rightarrow s(x)$$

$$(iv) \forall x, r(x) \lor s(x) \qquad (v) \exists x, p(x) \land r(x) \qquad (vi) \forall x, r(x) \rightarrow p(x).$$

9. Establish the validity of the following argument using the rules of inference:

$$\{ p\Lambda(p \rightarrow q)\Lambda(r \lor s)\Lambda(r \rightarrow \neg q) \rightarrow (s \lor t) \}$$

10. P.T i). direct proof ii) proof by contradiction for the following statement: "If n is an odd integer then n+9 is an even integer.

MODULE 2 PROPERTIES OF INTEGERS

1. Prove by mathematical induction

a.
$$1+5+9----+ (4n-3) = n (2n-1)$$
.
b. $4n < n^2 - 7$ for all integers $n \ge 6$.
c. Prove that $3+3^2+3^3+----+3^n = 3(3n-1)/2$
d. Show that $1^2+2^2+----+n^2 = n(n+1)(2n+1)/6$
e. Show that $1^2+3^2+----+(2n-1)^2 = n(2n-1)(2n+1)/3$

- 2. Determine the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$
- 3. How many arrangements are there for all letters in the word SOCIOLOGICAL? In how many of there arrangement i)A&G are adjacent ii)All the vowels are adjacent.
- 4. Find the coefficient:
 - i) x^{12} in the expansion of $x^3(1-2x)^{10}$.

ii) xyz^2 in the expansion of $(2x - y - z)^4$

5. Find the number of signals that can be generated using six different colored flags when any number

- 6. A certain question paper contains 3parts A,B,C with 4 questions in part A, 5 questions in part B and 6 questions in part C. It is required to answer 7 questions selecting at least two questions from each part. In how many ways can a student select his seven questions for
- 7. In how many ways can10 identical pencils be distributed among 5children in the following cases: i)No container is left empty.

ii)The fourth container gets an odd number of balls

- 8. In how many ways can 10 identical pencils be distributed among 5children in the following cases: i)There are no restrictions.
 - ii)Each children gets at least one pencil
 - iii)The youngest child gets atleast two pencils.
- 9. In how many ways 10 roses, 14 sunflowers, 15 daffodils can be distributed among 3 girls?
- 10. State the pigeonhole principle and generalization of pigeonhole principle. Prove that if 30 dictionaries in a library contains a total of 61,327 pages, then at least one of the dictionaries must have at least 2045 pages.
- 11. How many persons must be chosen in order that at least seven of them will have birthday in the same calendar month?
 - i)There are no restrictions.
 - ii)Each children gets at least one pencil
 - iii)The youngest child gets atleast two pencils.
- 12. In how many ways 10 roses, 14 sunflowers, 15 daffodils can be distributed among 3 girls?

MODULE 3

RELATIONS AND FUNCTIONS

- 1. Let A = 1,2,3,4 and B=1,2,3,4,5,6
 - (a)Find how many functions are there from A to B. How many of these are one to one? How many are onto?
 - (b) Find how many functions are there from B to A. How many of these are one to one? How many are onto?
- 2. Let $A=\{1,2,3\}$ and $B=\{2,4,5\}$. Determine the following.
 - (a) |AXB|
 - (b) Number of relation from A to B
 - (c) Number of relation from B To A
 - (d) Number of relations from A TO b that contains (1,2) and (1,5)
- 3. Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{w, x, y, z\}$. Find the number of onto function from A to B.

(i)Let
$$f: R \to R$$
 be defined by

$$f(x) = \begin{cases} 3x - 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$$

a. Determine f(0), f(-1), f(5/3), f(-5/3).

b. Find $f^{-1}(0)$, $f^{-1}(1)$, $f^{-1}(-1)$, $f^{-1}(3)$, $f^{-1}(-3)$, $f^{-1}(-6)$

c. What is $f^{-1}([-5, 5])$ and $f^{-1}([-6, 5])$?

4. Let f, g, h be functions from Z to Z defined by f(x) = x - 1,

$$g(x) = 3x, h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}$$

Determine $(f \circ (g \circ h)(x))$ and $((f \circ g) \circ h)(x)$ and verify that $f \circ (g \circ h) = (f \circ g) \circ h$

5. Consider the function $f: R \to R$ defined by f(x) = 2x + 5.

Let a function $g: R \to R$ be defined by g(x) = 12(x-5). Prove that g is an inverse of f.

- Let A = {1,2,3,4,6} and R be the relation on A defined by aRb iff a is a multiple of b.
 i)Write down R ii)Draw its digraph iii) Write the matrix of R.
- 7. For a given set A= {1,2,3,4}, let R be a relation on A:

 $R = \{(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)(2,1)(3,1)(4,1)\}.$

- a. Draw digraph of R
- b. Determine the indegree and outdegree of the vertices of digraph.
- 8. Draw Hasse diagram representing the positive divisors of 36.
- For a fixed integer n>1, Prove that the relation 'congruent modulo n' is an equivalence relation.
- Consider the set A= {1,2,3,4,5} and the equivalence relation:
 R={(1,1)(2,2)(2,3)(3,2)(3,3)(4,4)(4,5)(5,4)(5,5)} define on A. Find the partition of A induced by R
- 11. Let A= {1,2,3,4,5}. Define a relation R on A x A by $(x_1,y_1)R(x_2,y_2)$ iff $x_1 + y_1 + x_2 + y_2$ i) Verify that R is an equivalence relation on A x A.
 - ii) Determine the equivalence classes [(1,3)],[(2,4)] and [(1,1)].

MODULE 4 THE PRINCIPLE OF INCLUSION AND EXCLUSION

- In how many ways the 26 letters of English alphabet are permuted so that none of the pattern's CAR, DOG, PUN or BYTE occurs?
- 2. Define Derangement. In how many ways can each of 10 people select a left glove and a right glove out of a total of 10 pairs of gloves so that no person selects a matching pair of gloves?
- 3. In how many ways one can arrange the letters of the word CORRESPONDENTS so that there are i) exactly 2 pairs of consecutive identical letters? iii) at least 3 pairs of consecutive identical letters? iii) no pair of consecutive identical letters?
- 4. Five teachers T_1 , T_2 , T_3 , T_4 , T_5 are to be made class teachers for five classes. C_1 , C_2 , C_3 , one teacher for each class. T_1 and T_2 do not wish to become the class teachers for C_1 or C_2 , C_3 and C_4 or C_5 , and C_5 or C_4 or C_5 . In how many ways can the teachers be assigned the work (without displeasing any teacher
- 5. Find the rook polynomial for the chess board as shown in the figure
- 6. (a) Solve the recurrence relation: $Cn = 3C_{n-1} 2C_{n-2}$, for $n \ge 2$, given $C_1 = 3$, $C_2 = 3$
 - (b) Solve the recurrence relation $a_{n+2} 3a_{n+1} + 2a_n = 0$, $a_0 = 1$, $a_1 = 6$

MODULE 5 GROUP THEORY

- 1. Show that (A, \cdot) is an abelian group where $A = \{a \in Q | a \neq -1\}$ and for any $a, b \in A$.
- 2. State and prove Lagrange's theorem
- 3. If G be a group with subgroup H and K. If |G| = 660 and |K| = 66 and K C H CG and find
- 4. Show that i) the identity of G is unique. ii) the inverse of each element of G is Unique.
- 5. Define a group. Show that fourth roots of unity is an abelian group.
- 6. Define Klein 4 group . Verify A={1,3,5,7} is a Klein 4 group.
- 7. Let $G = S_4$, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, find the subgroup $H = \langle \alpha \rangle$. Determine the left cosets of H in G
- 8. Define Cyclic group and show that (G,8) whose multiplicatio table is as given below is

*	a	b	c	d	е	f
a	a	b	c	d	е	f
b	b	С	d	е	f	a
С	С	d	е	f	a	b
d	d	e	f	a	b	c
е	e	f	a	b	c	d
f	f	a	b	c	d	e