K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU - 560109 DEPARTMENT OF MECHANICAL ENGINEERING SESSION: 2022-2023 (EVEN SEMESTER) # CO-PO MAPPING | Course | · Finite Fi | | | -PO MA | Pring | | | | | |---|--|-----------------------|--|-----------|------------------------|-----------------|-------------|--|--| | Type: | | eme | nt Method | Co | urse Code:18 | ME61 | | | | | | | | No of Ho | | | 12302 | | | | | Theory Theory Theory Total task | | | | | | | | | | | (Lecture Class) | | | (Lecture Class) | | cture Class) | I otal tea | ching hours | | | | 4 | | | 4 | | 4 | | 50 | | | | ¥ . | | | | Marks | | | | | | | Internal Assessment | | | Internal Assessmen | nt | Internal
Assessment | | Credits | | | | 11. 15 | 40 | | 40 | | 4 | | | | | | To hav 1. To 2. To | have a knov
have a worl | lge o
wled
king | of different coordinate synge of shape functions knowledge of solving pruding frequency and modern | oblems | by finite elemer | nt method
ts | | | | | After co | | cou | rse, the students will be ab | | | | | | | | CO1 | Explain the basic concepts of Theory of Elasticity, basic principles of Finite Element Method and solve problems by using Potential energy principles, Applying (K3) RR and Galerkins method | | | | | | | | | | CO2 | Derive the shape functions for different types of elements and Solve the Problems on Trusses and bars Applying (K3) | | | | | | | | | | CO3 | Solve the beams | Applying (K3) | | | | | | | | | CO4 | Derive the | (400) | Applying (K3) | | | | | | | | CO5 | Derive th | ixisymmetric | Applying (K3) | | | | | | | | | | | Syllat | ous Cont | ent | | | | | | MODU
Introd | uction to F | inite | Element Method: Gen | eral des | cription of the f | inite element | CO1 | | | | homog | eneous and | no | applications of finite elements of the structure s | ctural, h | eat transfer an | d fluid flow | 08 hrs | | | | Dienla | PO1-3 | | | | | | | | | | Displa | PO2-3 | | | | | | | | | | Discretization process, Types of elements: 1D, 2D and 3D Node number: | | | | | | | PO3-3 | | | | stress | Location of nodes. Strain displacement relations, Stress strain relations, Plain stress and Plain strain conditions, temperature effects. | | | | | | | | | | 311033 2 | aid I faili Sti | aili (| conditions, temperature e | rifects. | | | PO5-2 | | | | Interpolation models: Simplex, complex and multiplex elements, Linear | PO6-1 | |---|--------| | interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex | PO12-1 | | Elements | | | LO: After the completion of the chapter the student will be able to | | | 1. Summarize the fundamentals of Theory of Elasticity | | | 2. Identify a problem as plane stress or plane strain based on loading and | | | geometry of the structure | | | 3. Describe the basic principles of Finite Element Method with its applications | | | and limitations | | | 4. Identify the different types of elements used in Finite Element Method | | | MODULE: 2 | CO2 | |--|---| | One-Dimensional Elements-Analysis of Bars Trusses: Linear | CO2 | | interpolation polynomials in terms of local coordinate's for 1D, 2D elements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 8), 2D isoperimetric element, Lagrange interpolation functions, Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Fore terms: Body force, traction force and point loads Numerical Problems: Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach and penalty approach, Analysis of trusses LO: After the completion of the chapter the student will be able to:- 1. Derive Euler-Lagrange equation and apply it to bars, beam (cantilever/simply supported and fixed) with different loading and end conditions | 08 hrs PO1-3 PO2-3 PO3-2 PO4-2 PO5-2 PO6-1 PO12-1 | | conditions Describe the Principle of virtual work and principle of minimum potential energy Summarize Rayleigh Ritz method and Galerkin's method and determine the displacement, strain and stress in bars and beams using those methods | | | MODULE: 3 | | | Beams and Shafts: Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory, Examples on | CO3 | | cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with | 08 hrs | | concentrated and uniformly distributed load. | PO1-3 | | Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts. | PO2-3 | | LO: Student will be able to | PO3-3 | | | PO4-2 | | Explain the interpolation polynomials corresponding to different element
types used in FEM | PO5-2 | | 2. Define simplex, complex and multiplex elements | PO6-1 | | 3. Explain the use of 2D PASCAL's triangle in determining the polynomial function for an element in FEM | PO12-1 | | 4. Explain with an illustration the importance of Jacobian transformation | | | matrix. | | | | | | | |--|--------|--|--|--|--|-----------------------------| | MODULE: 4 | CO4 | | | | | | | Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy generated in solid, energy stored in solid, 1D finite element formulation using vibrational method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins. | | | | | | | | | | | | | | LO: Student will be able to | | | | | | | | | | Derive the shape function, element stiffness matrix and load vector matrix
of a bar element used in FEM | | | | | | | | 1. Analyse the structural problems involving bars for maximum stresses by | PO5-2 | | | | | | | discretizing it with 1D bar elements | | | | | | | | | PO12-1 | | | | | | | MODULE: 5 | CO5 | | | | | | | Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric | | | | | | | | bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to point loads. | | | | | | | | Dynamic Considerations: Formulation for point mass, Consistent element mass | | | | | | | | matrix of one-dimensional bar element, truss element, Lumped mass matrix of bar | | | | | | | | element, truss element. | PO3-3 | | | | | | | | PO4-2 | | | | | | | LO: Student will be able to | | | | | | | | 1. Apply Langrange's interpolation function to determine the shape function | PO6-1 | | | | | | | for higher order 1D, 2D elements. | PO12-1 | | | | | | | Distinguish between Iso, sub and super parametric elements. Evaluate the given integral using one point and two-point Gauss-quadrature | | | | | | | #### **Text Books:** - 1. Logan, D. L., A first course in the finite element method,6th Edition, Cengage Learning, 2016. - 2. Rao, S. S., Finite element method in engineering, 5th Edition, Pergaman Int. Library of Science, 2010. - 3. R.Chandrupatla, "Introduction to Finite Elements in Engineering", 4th Edition, Prentice Hall, 2013. ## Reference Books (specify minimum two foreign authors textbooks) - 1. J.N.Reddy, "Finite Element Method"- McGraw -Hill International Edition. Bathe K. J. Finite Elements Procedures, PHI. - 2. Cook R. D., et al. "Concepts and Application of Finite Elements Analysis"- 4th Edition, Wiley & Sons, 2003 - 3. Olek C Zienkiewicz, Robert L Taylor, J.Z. Zhu, "The Finite Element Method: Its Basis and Fundamentals", 6th Edition, Butterworth Heinemann 2005. #### **Useful Websites** - > http://audilab.bmed.mcgill.ca/AudiLab/teach/fem/fem.html - http://nptel.ac.in/courses/112104115/ - > http://freevideolectures.com/Course/2358/Introduction-to-Finite-Element- Method ### **Useful Journals** Finite Elements in Analysis and Design, An International Journal for Innovations in Computational Methodology and Application, Elsevier. International Journal of Computational Methods, World Scientific. # Teaching and Learning Methods 1. Lecture class: 40 hours 2. Practical classes: 3 hours #### Assessment Type of test/examination: Written examination Continuous Internal Evaluation(CIE): 40 marks (30 marks -Average of three tests + 10 marks Assignments) Semester End Exam(SEE): 100 marks (students have to answer all main questions) which will be reduced to 60 Marks. Test duration: 1:30 hours Examination duration: 3 hours CO to PO Mapping PO7: Environment and Society PO1: Science and engineering Knowledge PO8: Ethics PO2: Problem Analysis PO9: Individual & Teamwork PO3: Design & Development PO10: Communication PO4: Investigations of Complex Problems PO11: Project Mngmt & Finance PO5: Modern Tool Usage PO12: Life long Learning PO6: Engineer & Society PSO1: Ability to apply concept of mechanical engineering to design a system, a component or a process/system to address a real world challenges PSO2: Ability to develop effective communication, team work, entrepreneurial and computational skills | со | РО | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO
10 | PO11 | PO12 | PS
O1 | PS
O2 | |------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|------|------|----------|----------| | 18M
E61 | K-
leve | | | | | | | | | | | | | | | | CO1 | K3 | 3 | 3 | 3 | 2 | • | 1 | - | - | - | - | - | 1 | 3 | 1 | | CO2 | K3 | 3 | 3 | 2 | 2 | • | 1 | - | - | - | - | - | 1 | 3 | 1 | | CO3 | K3 | 3 | 3 | 3 | 2 | 1 | 1 | • | - | - | - | - | 1 | 3 | 1 | | CO4 | K3 | 3 | 3 | 3 | 2 | 1 | 1 | 1 | - | - | - | - | 1 | 3 | 1 | | CO5 | K3 | 3 | 3 | 3 | 2 | 1 | 1 | | - | - | - | - | 1 | 3 | 1 | Course In charge Principal