

### K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF MECHANICAL ENGINEERING SESSION: 2022-2023 (EVEN SEMESTER)

# I SESSIONAL TEST QUESTION PAPER

### SET-A

Degree

: **B.E** 

Branch

Mechanical Engineering

Course Title : Finite Element Method **Duration** 

: 90 Minutes

USN Semester

VI

Date

19-4-2023

Course Code :

18ME61

: 30 Max Marks

Note: Answer ONE full question from each part

| Q.   | Question                                                                                                                                                                                                                                                | Marks | K Level               | CO<br>mapping |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|---------------|--|
| No.  | No. PART-A                                                                                                                                                                                                                                              |       |                       |               |  |
| 1(a) | Explain the basic steps of FEM                                                                                                                                                                                                                          | 5     | K2<br>Understanding   | CO1           |  |
| (b)  | Using the principle of minimum Potential Energy, <b>Determine</b> the displacements at the nodes for a spring system shown in figure. Take $k_1 = 40N/m$ , $k_2 = 60N/m$ , $k_3 = 80N/m$ and $k_4 = 100N/m$ , $F_1 = 60N$ , $F_2 = 80N$ and $F_3 = 40N$ | 5     | <b>K3</b><br>Applying | CO1           |  |
| (c)  | Derive the shape function for a quadratic bar element                                                                                                                                                                                                   | 5     | K3<br>Applying        | CO2           |  |
| -    | OR                                                                                                                                                                                                                                                      |       |                       |               |  |
| 2(a) | Explain the Node numbering scheme                                                                                                                                                                                                                       | 5     | K2<br>Understanding   | CO1           |  |
| (b)  | Use RR method, <b>find</b> the stress at a mid point of a bar as shown in figure. Take E = 70 Gpa and A = 100 mm <sup>2</sup> 8 kN  y  20 y  20 y  Derive the shape function for a 1D bar element by global                                             | 5     | K3<br>Applying        | CO1           |  |
| (c)  | coordinate system                                                                                                                                                                                                                                       | 5     | Applying              | CO2           |  |
|      | PART-B                                                                                                                                                                                                                                                  |       |                       |               |  |
| 3(a) | Describe the Convergence requirements                                                                                                                                                                                                                   | 5     | K2<br>Understanding   | CO1           |  |

|      | A cantilever beam is subjected to UDL for entire span of intensity 'P <sub>0</sub> '                               | 5       | K3<br>Applying         | COL |
|------|--------------------------------------------------------------------------------------------------------------------|---------|------------------------|-----|
| (b)  | Determine the equation for maximum                                                                                 | 5       | K3<br>Applying         | CO2 |
| (c)  | Derive the shape function for cubic bar element  OR                                                                |         | K2                     | CO1 |
|      | 1 2004                                                                                                             | 5       | Understanding          | CO1 |
| 4(a) | Explain the variational principles in FEM  A cantilever beam is subjected to point load at its free end. Determine | 5       | K3<br>Applying         | CO1 |
| (b)  | the equation for maximum deflection by RR Method                                                                   | 5       | К3                     | CO2 |
| (c)  | Derive the shape function for CST Element                                                                          |         | Applying               |     |
| (S)  | Course Incharge HOD IQAC-Coor                                                                                      | dinator | / < . C~~<br>Principal | 2   |

Course Incharge

IQAC- Coordinator



## K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF MECHANICAL ENGINEERING

SESSION: 2022-2023 (Even SEMESTER) I SESSIONAL TEST QUESTION PAPER

USN

### SET-B

Degree

: B.E

Semester

VI

Branch Course Title

Mechanical Engineering : Finite Element Method

Date Course Code :

19-4-2023 18ME61

Duration

: 90 Minutes

Max Marks

30

### Note: Answer ONE full question from each part

| Q.<br>No. | Question                                                                                                                                                                                                                                                                                 | Marks | K Level             | CO<br>mapping |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|---------------|--|
|           | PART-A                                                                                                                                                                                                                                                                                   |       |                     |               |  |
| 1(a)      | Explain the Discretization Process                                                                                                                                                                                                                                                       | 5     | K2<br>Understanding | CO1           |  |
| (b)       | Using the principle of minimum Potential Energy, <b>Determine</b> the displacements at the nodes for a spring system shown in figure. $ \frac{\delta}{k_1=40 \text{ N/m}} \frac{1}{k_1=60 \text{ N/m}} \frac{\delta_1}{k_1=80 \text{ N/m}} \frac{2}{k_2=80 \text{ N/m}} = 50 \text{ N} $ | 5     | K3<br>Applying      | CO1           |  |
| (c)       | Derive the shape function for a quadratic bar element                                                                                                                                                                                                                                    | 5     | K3<br>Applying      | CO2           |  |
|           | OR                                                                                                                                                                                                                                                                                       |       |                     |               |  |
| 2(a)      | Explain Simplex, Complex and Multiplex Elements                                                                                                                                                                                                                                          | 5     | K2<br>Understanding | CO1           |  |
| (b)       | Use RR method, find the displacement of a bar as shown in figure. Element 1 is made of Al and Element 2 is made of steel $E_{AJ} = 70$ Gpa and $A_{AJ} = 900 \text{ mm}^2$ $E_{Steel} = 200$ Gpa and Steel = 1200 mm <sup>2</sup> and P = 10000 N                                        | 5     | K3<br>Applying      | CO1           |  |
| (c)       | <b>Derive</b> the shape function for a 1D bar element by global coordinate system                                                                                                                                                                                                        | 5     | K3<br>Applying      | CO2           |  |
|           | PART-B                                                                                                                                                                                                                                                                                   |       |                     | 1             |  |
| 3(a)      | Derive the Potential energy function for 3D elastic body                                                                                                                                                                                                                                 | 5     | K3<br>Applying      | CO1           |  |

|            | A Cantilever beam is subjected to UDL for entire span of intensity 'P <sub>0</sub> '                                     | 5 | K3<br>Applying        | CO1 |
|------------|--------------------------------------------------------------------------------------------------------------------------|---|-----------------------|-----|
| (b)        | Determine the equation for maximum deflection re-                                                                        | 5 | <b>K3</b><br>Applying | CO2 |
| (c)        | Derive the shape function for CST Element                                                                                |   | 1155.)8               |     |
| OR K3      |                                                                                                                          |   |                       | 501 |
| 4(a)       | Define Global and natural coordinate system and derive the relation                                                      | 5 | Applying              | CO1 |
|            | between Cartesian and natural coordinate system  A Cantilever beam is subjected to point load at its free end. Determine | 5 | K3<br>Applying        | CO1 |
| <b>(b)</b> | the equation for maximum deflection by RR Method                                                                         |   | К3                    | ~~~ |
| (c)        | Derive the shape function for cubic bar element                                                                          | 5 | Applying              | CO2 |

Course Incharge

IQAC-Coordinator Principal